
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

12-2010

Self-stabilizing leader election in dynamic networks Self-stabilizing leader election in dynamic networks

Hema Piniganti
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Digital Communications and Networking Commons, and the OS and Networks Commons

Repository Citation Repository Citation
Piniganti, Hema, "Self-stabilizing leader election in dynamic networks" (2010). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 680.
https://digitalscholarship.unlv.edu/thesesdissertations/680

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/680?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

SELF-STABILIZING LEADER ELECTION IN DYNAMIC NETWORKS

By

Hema Piniganti

Bachelor of Engineering, Computer Science

Osmania University, India
2008

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

School of Computer Science

Howard R. Hughes College of Engineering

Graduate College

University of Nevada, Las Vegas

December 2010

www.manaraa.com

Copyright by Hema Piniganti 2010
All Rights Reserved

www.manaraa.com

ii

THE GRADUATE COLLEGE

We recommend the thesis prepared under our supervision by

Hema Piniganti

entitled

Self-Stabilizing Leader Election in Dynamic Networks

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
School of Computer Science

Ajoy K. Datta, Committee Chair

Lawrence L. Larmore, Committee Member

Yoohwan Kim, Committee Member

Emma E. Regentova, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

December 2010

www.manaraa.com

iii

ABSTRACT

SELF-STABILIZING LEADER ELECTION IN DYNAMIC NETWORKS

By

Hema Piniganti

Dr. Ajoy K. Datta, Examination Committee Chair
School of Computer Science

University of Nevada, Las Vegas

The leader election problem is one of the fundamental problems in

distributed computing. It has applications in almost every domain. In

dynamic networks, topology is expected to change frequently. An

algorithm A is self-stabilizing if, starting from a completely arbitrary

configuration, the network will eventually reach a legitimate

configuration.

Note that any self-stabilizing algorithm for the leader election

problem is also an algorithm for the dynamic leader election problem,

since when the topology of the network changes, we can consider that

the algorithm is starting over again from an arbitrary state. There are a

number of such algorithms in the literature which require large memory

in each process, or which take O(n) time to converge, where n is size of

the network. Given the need to conserve time, and possibly space, these

algorithms may not be practical for the dynamic leader election problem.

In this thesis, three silent self-stabilizing asynchronous distributed

algorithms are given for the leader election problem in a dynamic

network with unique IDs, using the composite model of computation. If

www.manaraa.com

iv

topological changes to the network pause, a leader is elected for each

component. A BFS tree is also constructed in each component, rooted at

the leader. When another topological change occurs, leaders are then

elected for the new components. This election takes O (Diam) rounds,

where Diam is the maximum diameter of any component.

The three algorithms differ in their leadership stability. The first

algorithm, which is the fastest in the worst case, chooses an arbitrary

process as the leader. The second algorithm chooses the process of

highest priority in each component, where priority can be defined in a

variety of ways. The third algorithm has the strictest leadership stability;

if a component contains processes that were leaders before the

topological change, one of those must be elected to be the new leader.

Formal algorithms and their correctness proofs will be given.

www.manaraa.com

v

TABLE OF CONTENTS

ABSTRACT .. iii

LIST OF FIGURES .. vii

ACKNOWLEDGEMENTS ... viii

CHAPTER 1 INTRODUCTION..1

1.1 Contributions ...2

1.2 Outline ...4

CHAPTER 2 BACKGROUND ...6

2.1 Distributed Systems ..6

2.2 MANET ...7

2.2.1 Characteristics ...8

2.2.2 Issues with Ad hoc Networking ...9

2.2.3 Applications of MANET .. 12

2.3 Self-Stabilizing Systems .. 15

2.4 DAG .. 18

CHAPTER 3 LEADER ELECTION IN DYNAMIC NETWORKS 19

3.1 Link Reversal Routing: .. 20

3.1.2 TORA ... 24

3.4 Non Self Stabilizing Leader Election Algorithms: 28

3.5 Self Stabilizing Leader election Algorithms: .. 30

CHAPTER 4 MODEL ... 32

CHAPTER 5 DYNAMIC LEADER ELECTION .. 36

5.1 Overview of DLE .. 36

5.2 Definition of DLE .. 37

5.2.1 Variables of DLE .. 37

5.2.2 Functions of DLE... 38

5.2.3 Legitimate state of the Algorithm DLE ... 39

5.2.4 Actions of DLE.. 40

5.3 Example Execution .. 40

5.4 Proofs for DLE ... 44

5.4.1 The Unfair Daemon ... 47

CHAPTER 6 DYNAMIC LEADER ELECTION WITH PRIORITY............................. 49

6.1 Overview of DLEP ... 50

6.2 Definition of DLEP .. 51

6.2.1 Variables of DLEP.. 51

www.manaraa.com

vi

6.2.2 Functions of DLEP .. 53

6.2.3 Legitimate Configurations for DLEP ... 55

6.2.4 Actions of DLEP ... 56

6.2.5 Explanation of Actions ... 57

6.3 Example Computation ... 57

6.4 Proofs of DLEP ... 59

6.4.1 The Unfair Daemon ... 63

CHAPTER 7 DYNAMIC LEADER ELECTION WITH NO DITHERING 66

7.1 Overview of DLEND .. 67

7.2 Definition of DLEND .. 68

7.2.1 Variables of DLEND .. 68

7.2.2 Functions of DLEND ... 69

7.2.3 Actions of DLEND .. 73

7.2.4 Explanation of Actions ... 75

7.3 Example Computations ... 77

7.4 Proofs of DLEND ... 81

CHAPTER 8 SKETCHES OF PROOFS .. 84

CHAPTER 9 CONCLUSION AND FUTURE WORK .. 88

BIBLIOGRAPHY ... 90

VITA ... 95

www.manaraa.com

vii

LIST OF FIGURES

FIGURE 5.1 DLE Example ... 44

FIGURE 6.1 Worst Case DLE ... 50

FIGURE 6.2 DLEP Example ... 58

FIGURE 7.1 DLEND Combination of Colors ... 71

FIGURE 7.2 DLEND Example .. 78

FIGURE 7.3 Example Showing how Colors help Dithering 80

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to sincerely thank Dr. Ajoy K

Datta for his guidance, support, encouragement, and invaluable support

throughout my Masters program and his help during my TA work for

four semesters.

I would like to express my sincere gratitude for Dr. Ajoy K. Datta

and Dr. Lawrence L. Larmore for their guidance and technical

contributions in my thesis research.

I would also like to thank Dr. Yoohwan Kim and Dr. Emma

E. Regentova for their time in reviewing my report and their willingness

to serve on my committee.

My special gratitude goes to my family and my friends for always

being there with me, without whose support, faith, and encouragement

this work would not have been possible.

www.manaraa.com
1

CHAPTER 1

 INTRODUCTION

In this thesis, we present three silent self-stabilizing asynchronous

distribution algorithms for the leader election problem in a dynamic

network with unique IDs. Thus this research covers several domains of

distributed computing, such as mobile ad hoc networks, self-stabilizing

systems.

The leader election problem is one of the fundamental problems in

distributed computing. In static networks, this problem is to select a

process among all the processes in the network to be the leader. In this

paper, we deal with leader election in dynamic networks, where a fault

could occur, i.e., data could be corrupted, or the topology could change,

even causing the network to become disconnected. In a dynamic

network, the problem is modified slightly in the following manner: The

goal is elect a leader for each component of the network after any

number of concurrent faults.

There are several leader election algorithms for dynamic networks.

However, the only self-stabilizing solutions we are aware of are presented

in [49, 13]. The algorithm of [13] is simpler (both the pseudo-code and

proof of correctness) and more efficient in terms of messages and

message size than the solution in [49]. However, both solutions suffer

from the same drawback, which is, the use of a global clock or the

assumption of perfectly synchronized clocks. The following is quoted

www.manaraa.com
2

from [13]: “The algorithm relies on the nodes having perfectly

synchronized clocks; an interesting open question is to quantify the effect

on the algorithm of approximately synchronized clocks.” One goal of this

paper is to solve the above open problem.

1.1 Contributions

Our algorithms have the following combination of features – they

are asynchronous, self-stabilizing, and silent, converge in O(Diam) time,

and use no global clock. They also use only O(1) variables per process;

however, one of the variables is an unbounded integer, meaning that if

the algorithm runs forever, the size of that integer grows without bound.

However, as a practical matter, this is of little importance, since the size

of that unbounded integer increases by at most one per step, and thus

should not overflow a modest size memory, even if the algorithm runs for

years.

All three of our algorithms elect a leader for each component of the

network, and also build a BFS tree rooted at that leader. In each case,

after a fault, each component of the network elects a leader within

O(Diam) rounds, where Diam is the maximum diameter of any

component, provided the variables are not corrupted.

The space and time complexities of our first algorithm, DLE, are

smaller than those of [13], as DLE requires fewer variables, and

converges in only Diam + 1 rounds from an arbitrary configuration,

www.manaraa.com
3

approximately one third the time as the algorithm of [13]. As in [13], DLE

picks an arbitrary process to be the leader of each component.

Our second algorithm, DLEP, picks the highest priority process of

each component to be its leader. Priority of a process can be defined as a

function of its ID, its local topology, or any data the process obtains from

the application layer. Since the choice of leader is not arbitrary, DLEP

should have greater leadership stability that DLE, i.e., there should be a

tendency for leaders to remain the same after small topological changes.

Our third algorithm, DLEND, ensures even greater leadership

stability than DLEP. If the network has reached a stable configuration,

and if a topological change, however great, occurs in a given step, and no

variables are corrupted, and then no fault occurs thereafter, every

component (under the new topology) will elect an incumbent, i.e., a

leader that was a leader before the topological change, if possible. In

cases where a component contains no incumbent, or more than one

incumbent, DLEND makes a choice based on priority in the same

manner as DLEP.

DLEND has an additional stability feature, which we call no

dithering. If the network has reached a stable configuration, and if a

topological change, however great, occurs in a given step, and then no

fault thereafter, then no process will change its choice of leader more

than once.

www.manaraa.com
4

1.2 Outline

In Chapter 2, we give an overview of the Distributed Systems,

Mobile ad hoc networks (MANET), and Self-stabilizing systems.

In Chapter 3, the detailed introduction to Leader Election problem

in Dynamic networks is given and then we discuss what Link Reversal

algorithms are and why this technique is adopted for leader election

problem. In latter sections of the Chapter we discuss few LRR algorithms

like GB algorithm, TORA. In Section 3.3 and 3.4 we give a brief overview

of Non Self Stabilizing and Self Stabilizing algorithms in the literature

that are similar to our algorithms, we also mention other related work.

In Chapter 4, we discuss the algorithms that we proposed in our

thesis.

In Chapter 5 we describe DLE the first proposed algorithm for

Leader election problem, In 5.1 we give the overview of the algorithm. In

the next section we present the definition of DLE that includes the

variables of DLE, functions of DLE, Legitimate state of the DLE algorithm

and actions of DLE. In section 5.3 we explain the algorithm DLE with

sample execution. In section 5.4 we give the proofs for DLE.

In Chapter 6, we describe the Dynamic Leader election with

Priority. DLEP picks the highest priority process of each component to be

its leader. In section 6.1 we give the overview of DLEP. In latter sections

we give the definition of DLEP in which we describe the variables,

functions, configurations and actions of DLEP. In section 6.3 we explain

www.manaraa.com
5

the algorithm with an example computation. In section 6.4 we give the

proofs of DLEP.

In Chapter 7, we describe the algorithm DLEND. It ensures greater

leadership stability than DLEP. Then we give the overview of DLEND. In

section 7.2 we give the definition of DLEND in which we describe the

variables, functions, actions of DLEND. In section 7.3 we explain DLEND

with an example computation. In section 7.4 we give the proofs of

DLEND.

In Chapter 8, we discuss the proofs of algorithms and in Chapter

9, concludes the thesis.

www.manaraa.com
6

CHAPTER 2

BACKGROUND

2.1 Distributed Systems

A number of definitions have been proposed in the literature to

explain the meaning of distributed systems. A distributed system is a

communication network, collection of independent computers that

appears to its users as a single coherent system, and it can even be a

single multitasking computer [21]. Although the processors in distributed

systems are autonomous in nature, they may need to communicate with

each other to coordinate their actions and achieve a reasonable level of

cooperation [2]. A program composed of executable statements are run

by each computer. Each execution of a statement changes the

computer’s local memory content, hence the state of the computer.

Consequently, a distributed system is modeled as a set of n state

machines that communicate with each other. There are mainly two

models for communications between machines; message passing and

shared memory. In the message passing model, machines communicate

with each other by sending and receiving messages. While in the shared

memory model, communication is carried out by writing in and reading

from the shared memory.

The major goals of distributed systems are:

 Distribution Transparency.

 Connecting resources and users.

www.manaraa.com
7

 Scalability.

 Openness.

2.2 MANET

Mobile ad hoc networks are formed dynamically by an autonomous

system of mobile nodes that are connected via wireless links without

using the existing network infrastructure or centralized administration.

In fact two or more nodes can form the mobile ad hoc network by being

in their transmission range. In this type of network, communication

between mobile nodes is peer-to-peer, so each node has direct

communication with another. Nodes also act as relay nodes to forward

data packets. This is very important part of communication technology

that supports truly pervasive/ubiquitous computing, because in many

contexts, information exchange among mobile units cannot rely on any

fixed network infrastructure but on the rapid configuration of wireless

connections on the fly [3]

MANETs are gaining momentum because they help realize network

services for mobile users in areas with no pre-existing communications

infrastructure, or when the use of such infrastructure requires wireless

extension. Ad hoc nodes can also be connected to a fixed backbone

network through a dedicated gateway device enabling IP networking

services in the areas where Internet service is not available due to the

lack of a preinstalled infrastructure.

www.manaraa.com
8

Minimal configuration and quick deployment make ad hoc networks

suitable for emergency situations like natural or human-induced

disasters, military conflicts, emergency medical situations, etc.

2.2.1 Characteristics

 Mobile ad hoc networks involve all networking layers, ranging from

the physical to application layer.

 Nodes in the ad hoc network are free to move while communicating

with other nodes.

 The bandwidth available is of the order of 1Mbps, an order of

magnitude less than that of wired networks.

 The communication in the network is a broadcast, which means

broadcast is no more expensive than unicast.

 Mobile nodes have limited battery power.

 Wireless links are much more error prone compared to wired links.

 The topology of ad hoc network is dynamic in nature due to

constant movement of the participating nodes, causing the

intercommunication patterns among the nodes to change

continuously.

 Every node may not be within the communication range of every

other node. So, multiple hops may be needed, for this the nodes

should serve as routers for other nodes in the network so that data

packets can be forwarded to their destinations.

www.manaraa.com
9

2.2.2 Issues with Ad hoc Networking

In general, mobile ad hoc networks are formed dynamically by an

autonomous system of mobile nodes that are connected via wireless links

without using the existing network infrastructure or any centralized

administration. These networks can be called as multi-hop wireless ad

hoc networks because routes between nodes in ad hoc networks may

include multiple hops.

In MANET wireless link “failures” occur when previously

communicating nodes move such that they are no longer within

transmission range of each other. Wireless link “formation” occurs when

nodes those are not in communication range move within the

transmission range of each other.

Ad hoc wireless networks inherit the traditional problems of

wireless communications and wireless networking (IEEE P802.11/D10,

January 14, 1999.) as described below:

 The wireless medium has neither absolute, nor readily observable

boundaries outside of which nodes are known to be unable to

receive network frames.

 The channel is unprotected from outside signals.

 The wireless medium is significantly less reliable than the wired

media.

 The channel has time-varying and asymmetric propagation

properties.

www.manaraa.com
10

 Hidden-terminal and exposed-terminal phenomena may occur.

To these problems and complexities, the multi-hop nature and the

lack of fixed infrastructure add a number of characteristics, complexities,

and design constraints that are specific to ad hoc networking [4, 5], and

are described below:

 MANET does not depend on any established infrastructure or

centralized administration. Each node operates in distributed peer-

to-peer mode, acts as an independent router, and generates

independent data. Network management has to be distributed

across different nodes, which brings added difficulty in fault

detection and management.

 Multi-Hop Routing is required, No default router is available. Every

node acts as a router and forwards each other’s packets to enable

information sharing among mobile nodes. Routing protocols are

self-starting, adapt to the changes in network conditions, and also

offer multi-hop paths from a source to a destination across the

network. Routing protocols designed for ad hoc networks can be

adopted to greatly improve the scalability of routing protocols

designed for use in the global Internet, which would be an

enormous payoff for ad hoc network research. More detailed

information on routing in MANET is given in [6].

 Dynamically Changing Network Topologies. In mobile ad hoc

networks, nodes can move arbitrarily. So the network topology,

www.manaraa.com
11

which is multi-hop, can change frequently and unpredictably,

resulting in route changes, frequent network partitions, and

possibly packet losses.

 Variation in Link and Node Capabilities. Each node may be

equipped with one or more radio interfaces that have varying

transmission/ receiving capabilities and operate across different

frequency bands [7]. This heterogeneity in node radio capabilities

can result in asymmetric links. In addition, each mobile node

might have different hardware/software configuration, resulting in

variability in processing capabilities. Designing network protocols

and algorithms for this heterogeneous network can be complex,

requiring dynamic adaption to the changing conditions.

 Energy Constrained Operation. Batteries carried by each mobile

node have limited power supply, processing power is limited, which

in turn limits services and applications that can be supported by

each node. This becomes a bigger issue in mobile ad hoc networks

because as each node is acting as both an end system and router

at the same time, additional energy is required to forward packets

from other nodes.

 Network Scalability. Currently, popular network management

algorithms were mostly designed to work on fixed or relatively

small wireless networks. Many mobile ad hoc network applications

involve large networks with tens of thousands of nodes, for

www.manaraa.com
12

example sensor networks and tactical networks [6]. Scalability is

critical to the successful deployment of these networks. A network

with large number of nodes and limited resources involve many

challenges that are yet to be solved, such as addressing, routing,

location management, configuration management, interoperability,

security, high capacity wireless technologies, etc.

2.2.3 Applications of MANET

MANET has many applications, ranging from large scale mobile

and highly dynamic networks, to small and static networks that are

constrained by power sources. Typical application domains of MANET

include commercial sector, military, battlefield, civilian environments,

emergency operations, and personal area network (PAN). Some of the

specific applications are mentioned below [6]:

 Conferencing. When mobile computer users gather outside their

normal office environment, the business network infrastructure is

often missing. The whole point of the meeting might be to make

some further progress on a particular collaborative project. As it

turns out, the establishment of an ad hoc network for collaborative

mobile computer users is needed even when the Internet

infrastructure support already exists.

 Home Networking. Consider the scenario that will result if wireless

computers become popular at home. These computers will

probably be taken to and from the office work environment and on

www.manaraa.com
13

business trips. Such computers will not have topologically related

IP addresses to each wireless node for identification purposes

would add an administrative burden, and the alternative of

deploying ad hoc networks seems more attractive.

 Emergency Services. A mobile ad-hoc network can also be used to

provide crisis management services applications, such as in

disaster recovery, where the entire communication infrastructure

is destroyed and resorting communication quickly is crucial. By

using a mobile ad-hoc network, an infrastructure could be set up

in hours instead of weeks, as is required in the case of wired line

communication.

 Personal Area Networks. The idea of a personal area network (PAN)

is to create a much localized network populated by some network

nodes that are closely associated with a single person. When

people meet in real life, their PANs are likely to become aware of

each other. Mobility becomes more important when interactions

between several PANs are needed. Since people usually do not stay

in a fixed location with respect to each other for a long time,

dynamic nature of this inter-PAN communication is obvious. Ad

hoc networks can be used to establish communications between

node on spate PANs.

 Embedded Computing Applications. Some researches predict a

world of ubiquitous computing [9], in which computers will be

www.manaraa.com
14

around us, constantly performing mundane tasks to make our

lives a little easier. These ubiquitous computers will often react to

the changing environment in which they are situated and will

themselves cause changes to the environment in ways that are, we

hope, predictable and planned. These capabilities can be provided

with or without the use of ad hic networks, but ad hoc networking

is likely to be more flexible and convenient that the continual

allocation and reallocation of endpoint IP address whenever a new

wireless communication link is established.

 Sensor Dust. Consider a situation in which some hazardous

chemicals were dispersed in an unknown manner because of an

accident or explosion. Instead of sending persons who might be

subjected to lethal gas and forced to work in unwieldy protective

clothing, it would be better to distribute sensors containing

wireless transceivers [10] [11]. The sensors could then form an ad

hoc network and help in gathering the information about the

accident and chemical concentrations.

 Automotive/PC Interaction. Ad hoc networks can be used to

provide interactions between automotive computers and laptops or

PDAs that may accompany us as we travel in our cars.

 Educational Applications. Setup ad hoc communication during

conferences, meetings, or lectures.

 Commercial Environments.

www.manaraa.com
15

o E-Commerce: e.g., Electronic payments from anywhere.

o Business: Dynamic access to customer files stored in a central

location on the fly, Provide consistent database for all agents.

o Vehicular Services: Transmission of news, road condition,

weather, music, road/accident guidance etc.

In spite of the various applications served by the ad hoc networks,

they still have to overcome the defects such as the limited wireless

transmission range, link quality, fading, noise, interference caused due

to its broadcast nature, route changes and packet losses induced due to

its broadcast nature, route changes and packet losses induced due to the

node mobility, battery constraints, and potentially frequent network

partitions. Security and interception problems are of a major concern,

especially in military applications. Therefore, designing the protocol for

MANET is very crucial, and these issues must be carefully examined

before widespread commercial deployment.

2.3 Self-Stabilizing Systems

Now a day’s Software systems are used everywhere. Thus

commercially available software systems must be able to adjust to

different inputs and handle different faults so that they can be used in

many different environments.

Self-Stabilization is related to autonomic Computing, which entails

several “self-*” attributes like; self-organized [12], self-configuration [13],

www.manaraa.com
16

self-healing [14], and self-maintaining [15]. According to [16], research in

a self-* system is “a direct response to the shift from needing bigger,

faster, stronger computer systems to the need for less human-intensive

management of the systems currently available. System complexity has

reached the point where administration generally costs more than

hardware and software infrastructure.” The goals of the self-* systems

are reduction of human administration and maintenance, and an

increase of reliability, availability and performance.

In 1973, Dijkstra introduced the term self-stabilization in the world

of computer science [17, 18] which was a concept of fault-tolerance.

Unfortunately, only a few people had become aware of its importance

until Lamport endorsed this as “Dijkstra’s most brilliant work” and a

“milestone in work on fault-tolerance in his invited talk at the ACM

Symposium on Principles of Distributed Computing in 1983. Today it is

one of the most active areas of research in the field of computer science.

A system is considered self-stabilizing if starting from any arbitrary

state (possibly a fault state) it is guaranteed to converge to a legitimate

state which satisfies its problem specification in a finite number of steps.

Once it converges to a legitimate state, it must stay in that legitimate

state thereafter unless a fault occurs. With respect to behavior, it can

also be defined as a system starting from an arbitrary state, reaching a

state in finite time from which it starts behaving correctly according to its

www.manaraa.com
17

specification. This self-stabilization enables systems to recover from a

transient fault automatically.

According to [19, 20], the self-stabilization can be defined in terms

of two properties; closure and convergence. Closure means that if a

system is in a correct (or legitimate) state, it is guaranteed to stay in a

correct state, if no fault occurs. On the other hand, convergence means

that starting from any arbitrary state, it is guaranteed that the system

will eventually reach a correct state in finite steps. In order for a system

to be self stabilizing it must satisfy both of these properties.

Self–stabilization has been extensively studied in the area of

network protocols. Protocols like routing, sensor networks, high-speed

networks, and connection management are just a part of many

applications of self-stabilization. Also, there exist many self-stabilizing

distributed solutions for graph theory problems. For example, spanning

tree constructions, maximal matching, search structures, and graph

coloring. Many self-stabilizing solutions for numerous classical

distributed algorithms were also proposed. Those include mutual

exclusion, token circulation, leader election, distributed reset,

termination detection, and propagation of information with feedback [21].

In the study of self-stabilization, several aspects of models have

been considered, such as the following:

 Interprocess Communication: shared registers or message passing.

 Fairness: weakly fair, strongly fair, or unfair.

www.manaraa.com
18

 Atomicity: composite or read/write atomicity.

 Types of Daemon: central or distributed.

All together proving stabilization programs are quite challenging.

Two techniques have been commonly used in research literature:

convergence stair [22] and variant function [23] methods. Furthermore,

many general methods of designing self-stabilizing programs have been

proposed which include diffusing computation [24], silent stabilization

[25], local stabilizer [26], local checking and local correction [27, 28],

counter flushing [29], self-containment [30], snap-stabilization [31],

super-stabilization [32], and transient fault detector [33].

Self-stabilization is a significant concept in the study of MANETs.

Due to the dynamic nature of MANET topology, the protocols for setting

up and organizing MANETs are desirable to self-stabilizing.

2.4 DAG

A directed acyclic graph (DAG) is a directed graph that contains no

cycles. DAG is rooted at the destination means that is the node that will

have only incoming links all other nodes that have incoming should have

outgoing links. A rooted tree is a special kind of DAG and a DAG is a

special kind of directed graph. For example, a DAG may be used to

represent common sub expressions in an optimizing compiler.

www.manaraa.com
19

CHAPTER 3

LEADER ELECTION IN DYNAMIC NETWORKS

In distributed computing leader election is an important primitive.

It is useful for many applications that require the selection of a unique

processor among multiple processors.

There are many applications for leader election algorithms; usually

used as a primitive in other distributed algorithms.

 Primary-backup approach to replication based fault-tolerance.

 Group communication systems [35].

 For video conferencing.

 Multiplayer games [36].

 Leader election is required when a mutual exclusion application is

blocked because of the failure of a token holding node.

 It is required in key distribution and management [37], and routing

coordination [38, 39, 40].

Leader Election Problem:

The leader election problem is one of the fundamental problems in

distributed computing, whether wired or wireless, especially when

failures are common.

The leader election problem for static networks is [41]: Every

network should eventually have a unique leader.

However, in dynamic networks due to node mobility and link

failures partitions can occur and leader will not be elected until a

www.manaraa.com
20

partitioning is detected. And sometimes, two network components may

merge and temporarily there may be two leaders in the newly formed

network or there can be a period where there is no leader in the

component. Thus the leader election problem definition in mobile ad hoc

networks should be slightly modified: Every connected component will

eventually have a unique leader, even after any number of concurrent

faults.

There are many leader election algorithms given, but most of them

are not self-stabilizing or few doesn’t work when there are concurrent

changes in the network.

Some leader election algorithms are based on TORA [42] and few

are based on diffusing computation.

We discuss leader election algorithms based on TORA which is a

routing algorithm for mobile ad hoc networks. TORA in turn is based on

a loop-free routing algorithm of Gafni and Bertsekas, which are based on

Link Reversal algorithms.

3.1 Link Reversal Routing:

Link reversal routing is a highly adaptive form of routing originally

intended for use in networks with rapidly changing topologies [46]. A key

concept behind LRR is the decoupling of far-reaching control message

propagation from the dynamics of the network’s topology. It will be

appropriate for use in networks where the rate of topological change is

www.manaraa.com
21

not as fast as to make flooding the only possible routing method and not

so slow to make algorithms capable of supporting a shortest path

computation applicable.

The main objective of LRR is to minimize the amount of routing

overhead that must be exchanged between nodes when reacting to

changes in a network topology to a greatest extent possible. This is

possible by localizing the algorithm’s reaction to topological changes.

Instead of maintaining the shortest path routing computation for a

destination in the network, LRR will maintain only the state sufficient to

constitute a directed acyclic graph (DAG) rooted at the destination. DAG

is a loop free routing and can provide nodes in the network with multiple,

redundant routes to the destination. The nodes don’t know the distance

from the destination or anything about the nodes in the network other

than their one-hop neighbors. This differentiates the LRR from other

routing techniques. It is very difficult for a node to continuously estimate

its shortest distance to the destination. So this algorithm may not give

the shortest path route it may result in less optimal routing but it is very

efficient in terms of routing overhead communication complexity, and

hence it is very adaptive and scalable.

Link failures are very common in dynamic networks and we need

to update the link state and find the new shortest path and must be

communicated to all the nodes for which that link forms a part of their

shortest path spanning tree. For LRR, the reaction to a link failure is

www.manaraa.com
22

limited to the set of nodes that lost their last outgoing link to the

destination because of the failed link. Thus the redundancy in the

routing DAG minimizes the frequency and scope of algorithmic reactions

due to link failures.

3.1.1 Gafni-Bertsekas Algorithm:

This is a highly adaptive loop-free multipath routing algorithm

based on LRR. Given a connected, destination-disoriented DAG,

transform it into a destination-oriented DAG by reversing the direction of

some of its links. A DAG is destination oriented only when every node

has a directed path originating at the node and terminated at the

destination. Otherwise a DAG is destination disoriented if any node other

than the destination node has no outgoing link.

There are 2 algorithms to solve this problem Full Reversal method and

Partial Reversal method [44].

Full Reversal, in this if a node doesn’t have outgoing link then it

will reverse the direction of its entire links. Thus no list is required here.

 Partial Reversal Method:

Every node i in the network other than the destination, will

maintain the list of its neighboring nodes j that have reversed the

direction of the corresponding links (i,j). At each iteration the node that

doesn’t have any outgoing link will reverse the direction of links (i,j) for

all j that do not appear on its list and empties the list. If the list is full i.e.

www.manaraa.com
23

there is no such j then node i reverses the direction of all incoming links

and empties the list.

Partial reversal method is improved to a “height based” form from a

list-based. In this algorithm each node maintains a height variable,

drawn from a totally ordered set. Every node i will have height variable

associated with it, which is a triple (αi, βi, i), where αi and βi are integers.

Let N denotes the set of nodes in the network. The initial set of

triples {(αi
0, βi

0
, i) | i ϵ N} satisfies αi

0 = 0 for all i, and for any link (i, j) we

have (αi
0, βi

0
, i) > (αj

0, βj
0
, j) if and only if link (i, j) in the initial DAG is

directed from i to j.

Assuming that each node ID i is unique, the set of triples form a

total order and the directed graph is loop free regardless of the values of

αi and βi. The links are directed on the basis of the relative heights of

neighboring nodes, i.e. from higher to lower. The parameter αi represents

the reference level and βi and i are used to differentiate the heights with

common reference level. The algorithm is triggered when ever one or

more nodes lose all their outgoing links.

Let Ni denote the set of one-hop neighbors of node i. The kth

iteration is implemented as follows:

A node i, other than the destination, for which (αi
0, βi

0
, i) < (αj

0, βj
0
, j),

∀j ϵ Ni, increases αi
k {αj

k | j ϵ Ni} + 1

and sets βi
k+1 = min{ βj

k | j ϵ Ni, αi
k+1 = αj

k} – 1

 if there exists a neighbor j with αi
k+1 = αj

k

www.manaraa.com
24

 otherwise, βi
k+1 = βi

k.

The rule for setting αi
k+1 ensures that node i will have at least one

outgoing link, i.e., that (αi
k+1, βi

k+1
, i) will be larger than the height of at

least one neighbor with the smallest height. The rule for setting βi
k+1 tries

to limit the number of links incident on i that will have their direction

reversed, by keeping i’s height smaller than that of any neighbors whose

α height component is not smaller than αi
k+1. Reducing the number of

links whose direction changes limits the propagation of height changes.

The GB algorithm is deadlock free and loop free at all times. The

destination node is the lowest numbered node. As long as the network

remains connected, the GB algorithm converges after a finite number of

iterations but the algorithm is unstable and never converges in the

network portions that are disconnected from the destination.

3.1.2 TORA

Park and Corson adapted the GB algorithm for routing in mobile

ad hoc networks, calling it as TORA (Temporally Ordered Routing

Algorithm) [42].

In TORA there is a mechanism for detecting the network partition

where the destination is no longer reachable, where as GB algorithm

would have caused infinite number of messages. The protocol is

adaptive, reasonably efficient, and scalable, making it potentially well

suited for use in large, dynamic networks.

www.manaraa.com
25

In TORA the height of node i is a 5-tuple, (λi, oidi, ri, δi, i) from a

totally ordered set and links between the nodes are logically considered

to be directed from higher to lower heights. From left to right the first 3

components in the height form a reference level, the next one is a delta

component, and the next is the node’s id, which is unique for every node

in the network.

A new reference level is started by node i if it loses its last outgoing

link due to a link failure. As nodes lose outgoing links new reference

levels are propagated throughout the connected component in search of

the alternate directed path to the destination. Whenever a node becomes

sink it will increase its reference level and propagates the reference level

in the component.

The search for the destination is started by setting λi to the time

when a node started the new reference level initially we assume that all

nodes have synchronized clocks and oidi is set to i, the originator of this

reference level, this ensures that the reference levels can be totally

ordered lexicographically, even if multiple nodes define new reference

levels because of the link failures that occur simultaneously. The third

component ri is zero initially it is used to detect the partition in the

network, when one section of the network is dead-end and it can’t find

the destination in that direction then it will set the ri to 1 and the

reference level is reflected back to towards the originator, When the

originator receives the reflected reference levels back from all its

www.manaraa.com
26

neighbors then it has identified a partition from the destination. δ value

is used to order the nodes that have the common reference level.

Each node i maintains its height Hi with respect to the destination.

Each node i that has no outgoing links will modify its height Hi = (λi, oidi,

ri, δi, i) as follows.

Case 1: If, because of a link failure, node i has no outgoing links, it

modifies its height as

 (λi, oidi, ri) = (t, i, 0)

 (δi, i) = (0, i)

t is the time of the failure.

Case 2: If, because of a link reversal the node i lost it’s all outgoing links

and the reference levels of its neighbors are not equal. i.e. ((λj, oidj, rj) are

not equal for all j ϵ Ni, then node i modifies its height as

 (λi, oidi, ri) = max {((λj, oidj, rj) | j ϵ Ni},

 (δi, i) = (min {δj | j ϵ Ni with (λj, oidj, rj) = max {(λj, oidj, rj)}} – 1, i)

Here node i will choose the highest reference level of all the neighbors

and selects the height lower than that of all the neighbors with that

reference level.

Case 3: If, because of a link reversal node i loses all the outgoing links

and the reference levels of the neighbors are equal i.e. (λj, oidj, rj) for all j

ϵ Ni are equal with rj = 0, then node i modifies its height as

 (λi, oidi, ri) = (λj, oidj, 1),

 (δi, i) = (0, i)

www.manaraa.com
27

Here if a node receives same reference levels from all the neighbors then

the node reflects back the same reference level by setting ri = 1. The

reflected reference level is propagated back towards the node that

originally defined the reference level.

Case 4: If, because of a link reversal node i lost all the outgoing links and

the reference levels

(λj, oidj, rj) are equal with rj = 1 for all j ϵ Ni, and oidj = i, then i modifies

its height as

 (λi, oidi, ri) = (_, _, _),

 (δi, i) = (_, i)

Here the node i has detected a partition and i must initiate the process of

erasing the invalid routes, routes that are not routed at the destination.

Case 5: If, because of a link reversal node i lost all the outgoing links and

the reference levels (λj, oidj, rj) are equal with rj = 1 for all j ϵ Ni, and

oidj ≠ i, i.e., node i did not define the level, then i modifies its height as

 (λi, oidi, ri) = (t, i, 0),

 (δi, i) = (0, i)

Here node i did not define the reference level itself it experienced a link

failure between the time it propagated the reference level and the time it

got the reflected reference level from all the neighbors. This is not

necessarily an indication of a partitioning of the component. Therefore,

the node starts a new reference level. This case occurs only when a link

fails while the system is recovering from an earlier link failure.

www.manaraa.com
28

3.4 Non Self Stabilizing Leader Election Algorithms:

Malpani et al. [1] have adapted the Temporally Ordered Routing

Algorithm (TORA) to elect a unique leader in each network component.

They have proposed 2 leader election algorithms, the first one is for one

topological change and the second one is for concurrent topological

changes. One topological change means a new topological change occurs

only after the algorithm has terminated its execution of current topology

change and concurrent topology changes means changes can occur at

any time. First algorithm is proved to elect a unique leader, if the

network stabilizes for a sufficiently long time. Whereas the second

algorithm doesn’t have any proof of correctness.

Malpani modifies the TORA to leader election algorithm by

changing few things as follows:

In Malpani’s algorithm the height of each node is a 6-tuple,

(lidi, λi, oidi, ri, δi, i). The first component is the id of the node considered

to be the leader of i’s component. The remaining 5 components are same

as in TORA.

Instead of having a single destination-oriented DAG as in TORA,

each component eventually forms a leader-oriented DAG. The reference

level (- 1, - 1, - 1) is used by the leader of the component to ensure that it

is a sink.

www.manaraa.com
29

When a node has no outgoing links as well as no incoming links

then that node elects itself as a leader. The height variable of a leader

node is (i, -1, -1, -1, 0, i)

In TORA the node that detected the partition from destination

sends out indications to the other nodes about the partition so that they

will cease performing height changes and stops sending useless

messages to reach the destination. In Malpani’s algorithm, the node that

detects the partition elects itself as the leader of the new component and

it transmits this information to its neighbors, who in turn propagates

this information to their neighbors and so on. Eventually all the nodes in

the component will become aware of the new leader. When two

components merge because of a new link formation, then the merged

component may end up having more than one leader. In that case the

leader of one of the component that has the lower identification number

becomes the leader of the new component.

When node i has no outgoing links due to a link reversal following

reception of an Update message and the reference levels (λj, oidj, rj) are

equal with rj = 1 for all j ϵ Ni and oidj = i:

lidi = i

(λi, oidi, ri) = (- 1, - 1, - 1)

δi = 0

When node i receives an Update message from neighboring node j such

that lidj ≠ lidi:

www.manaraa.com
30

if lidi > lidj or (oidi = lidj and ri = 1) then

lidi = lidj

(λi, oidi, ri) = (0, 0, 0)

i j + 1

3.5 Self Stabilizing Leader election Algorithms:

There are several leader election algorithms for dynamic networks.

However, the only self-stabilizing solutions we are aware of are presented

in [49, 13]. The algorithm of [13] is simpler (both the pseudo-code and

proof of correctness) and more efficient in terms of messages and

message size than the solution in [49]. However, both solutions suffer

from the same drawback, which is, the use of a global clock or the

assumption of perfectly synchronized clocks. The following is quoted

from [13]: “The algorithm relies on the nodes having perfectly

synchronized clocks; an interesting open question is to quantify the effect

on the algorithm of approximately synchronized clocks.” One goal of this

paper is to solve the above open problem.

Furthermore, in the execution of the algorithm of [13], a process

could change its choice of leader many times. Our third algorithm,

DLEND, has the property that if a topological changes, however great,

occurs, but if no variables are corrupted, no process changes its choice

of leader more than once.

www.manaraa.com
31

There are number of stabilizing leader election algorithms for static

networks in the literature. Arora and Gouda [47] present a silent leader

election algorithm in the shared memory model. Their algorithm requires

O(N) rounds and O(logN) space, where N is a given upper bound on n, the

size of the network. Dolev and Herman [32] give a non-silent leader

election algorithm in the shared memory model. This algorithm takes

O(Diam) rounds and uses O(N logN) space. Awerbuch et al. [48] solve the

leader election problem in the message passing model. Their algorithm

takes O(Diam) rounds and uses O(logDlogN) space, where D is a given

upper bound on the diameter. Afek and Bremler [46] also give an

algorithm for the leader election problem in the message passing model.

Their algorithm takes O(n) rounds and uses O(log n) bits per process,

where n is the size of the network. They do not claim that their algorithm

works under the unfair daemon. In [32], we gave a uniform self-sabilizing

leader election algorithm. This algorithm works under an arbitrary, i.e.,

unfair scheduler (daemon). The algorithm has an optimal space

complexity of O(log n) bits per process. From an arbitrary initial

configuration, the algorithm elects the leader and builds a BFS tree

rooted at the leader within O(n) rounds, and is silent within O(Diam)

additional rounds, where Diam is the diameter of the network. The

algorithm does not require knowledge of any upper bound on either n or

Diam.

www.manaraa.com
32

CHAPTER 4

 MODEL

Our algorithms have the following combination of features, they

are asynchronous, self-stabilizing, and silent, converge in O(Diam) time,

and use no global clock. They also use only O(1) variables per process;

however, one of the variables is an unbounded integer, meaning that if

the algorithm runs forever, the size of that integer grows without bound.

However, as a practical matter, this is of little importance, since the size

of that unbounded integer increases by at most one per step, and thus

should not overflow a modest size memory, even if the algorithm runs for

years.

All three of our algorithms elect a leader for each case, after a fault,

each component of the network elects a leader within O(Diam) rounds,

where Diam is the maximum diameter of any component, provided the

variables are not corrupted.

We are given a connected undirected network, G = (V, E) of |V| = n

processes, where n ≥ 2, and a distributed algorithm A on that network.

Each process x has a unique ID, x.id. By an abuse of notation, we will

identify each process with its ID.

A self-stabilizing [18, 21] system is guaranteed to converge to the

intended behavior in finite time, regardless of the initial state of the

system. In particular, a self-stabilizing distributed algorithm will

eventually reach a legitimate state within finite time, regardless of its

www.manaraa.com
33

initial configuration, and will remain in a legitimate state forever. An

algorithm is called silent if eventually all execution halts.

We use the composite atomicity model of computation, where each

process has variables. Each process can read the values of its own and

its neighbors’, but can only write to its own variables. Each transition

from a configuration to another, called a step of the algorithm, is driven

by a scheduler, also called a daemon.

The program of each process consists of a finite set of actions of

the following form: < label >< informal name >< guard > → < statement >.

We list the program of DLE, DLEP, and DLEND in Tables 1, 2, and 3,

respectively. For each action, the label is listed in the first column, and

an informal name is listed in the second column. The third column

(guard) contains a list of clauses, all of which must hold for the action to

execute, and the fourth column contains the statement of the action. The

guard of an action in the program of a process x is a Boolean expression

involving the variables of x and its neighbors. The statement of an action

of x updates one or more variables of x. An action can be executed only if

it is enabled, i.e., its guard evaluates to true.

In Tables 2, and 3, we assign a priority, a positive integer, to each

action. The guard of each action is the conjunction of the clauses in the

third column, together with the condition that no earlier (in terms of

priority) action is enabled.

www.manaraa.com
34

A process is said to be enabled if at least one of its actions is

enabled. A step γi → γi+1 consist of one or more enabled processes

executing an action. The evaluations of all guards and executions of all

statements of those actions are presumed to take place in one atomic

step composite atomicity [21]. All three of our algorithms are uniform,

i.e., every process has the same program.

When a process x executes the statement of an action, there could

be neighbors of x that are executing statements during the same step.

We specify that x uses the current values of its own variables (which

could have just been changed during the current step), but old values of

its neighbors’ variables, i.e., values before the current step.

We use the distributed daemon. If one or more processes are

enabled, the daemon selects at least one of these enabled processes to

execute an action. We also assume that daemon is unfair, i.e., that it

need never select a given enabled process unless it becomes the only

enabled process.

We define a computation to be a sequence of configurations

γp → γp+1…. →γq such that each γi → γi+1 is a step.

We measure the time complexity in rounds [21]. The notion of

round [21], captures the speed of the slowest process in an execution. We

say that a finite computation б = γp→ γp+1→….→ γq is a round if the

following two conditions hold:

www.manaraa.com
35

1. Every process x that is enabled at γp either executes or becomes

neutralize during some step of б. We say that a process x is

neutralized at a step γ→γ′ if x is enabled at γ and not enabled at γ′,

but x does not execute during that step.

2. The computation γp → …. →γq-1 does not satisfy condition 1.

We call a computation of positive length which fails to satisfy condition 1

an incomplete round.

We define the round complexity of a computation to be the number

of disjoint rounds in the computation. More formally, we say that a

computation γp → …. → γq has round complexity m if there exist indices

p = i0 < i1 < …. < im-1 < q such that

1. γij+1 → …. → γij is a round for all 1 ≤ j < m,

2. γim-1 → …. → γq is either a round or an incomplete round.

We remark that an incomplete round could have infinite length,

since the unfair daemon might never select an enabled process. But this

cannot happen for the algorithms given in this paper. We will show that

every computation of each of our algorithms is finite, i.e., all the

proposed algorithms in this paper “work” under the unfair daemon.

www.manaraa.com
36

CHAPTER 5

 DYNAMIC LEADER ELECTION

Our first algorithm, DLE, is somewhat similar to the algorithm of

[9], although it is asynchronous and works under the unfair daemon.

The basic idea is that every process that detects that it cannot possible

be part of what will become a correct BFS tree declares itself to be a

leader. When several processes in a component declare themselves to be

leaders, one of them will capture the component.

5.1 Overview of DLE

Every process x has a leadership pair, (x.nlp, x.leader), indicating

that x has chosen the process whose ID is x.leader as its leader. The

number, x.nlp is called a negative leadership priority.

When a process l declares itself to e a leader, it chooses a priority

number that is higher than the priority number of its previous leader;

but it chooses a priority number of its previous leader; but it stores the

negative number, because we want the smallest leadership pair to have

priority.

In a legitimate (final) configuration, all processes in any one

component C of the network have the same leadership pair, (nlp, lc),

where lc is some process in the component, the leader of C. In addition,

there is a BFS tree of the component rooted at lc. Each process x has a

www.manaraa.com
37

pointer to its parent in the BFS tree, as well as a level variable, whose

value is the distance from x to lc.

The basic technique of the algorithm is flooding. Under certain

conditions, a process declares itself to be a leader by executing Action A1

(as listed in Table 1), creating a new leadership pair with declared leader

then attempts to capture the entire component by flooding its leadership

pair. The smallest (using lexical ordering), i.e., highest priority,

leadership pair captures the entire component, and the algorithm halts.

The reason a new leader picks a higher priority than its old leader

is that, because of deletion of links, it is possible that the old leader is no

longer in the same component. Giving priority to the “youngest” leader

guarantees that the leader of highest priority is in the component,

provided at least one round has elapsed since any link was deleted.

5.2 Definition of DLE

5.2.1 Variables of DLE

For any process x, we have variables:

1. x.id, the ID of x. We assume that IDs are unique, and that they

form an ordered set. That is, if x, y, and z are distinct process, then

either x.id < y.id or y.id < x.id; and if x.id < y.id and y.id < z.id,

then x.id < z.id.

By an abuse of notation, we will use the same notation to refer to a

both a process and its ID.

www.manaraa.com
38

2. x.leader, the process that x has selected to be its leader, which we

call the leader of x.

3. x.level, a non-negative integer which, in a legitimate configuration,

must be the distance from x to x.leader.

4. x.nlp, a non-positive integer called the negative leader priority of x.

The value of x.nlp is the negative of the priority that x.leader

assigned to itself when declared itself to be a leader. The value of

x.nlp is not bounded; however, in practice, it will not overflow the

memory of a process, even if the algorithm runs for years.

5. x.vector = (x.nlp, x.leader, x.level), the vector of x. Vectors are

ordered lexically.

Although we list x.vector as a variable, it is actually an ordered

tuple of other variables, and hence requires no extra space.

6. x.parent, the parent of x. In a legitimate configuration, if x is not

the leader of its component, x.parent is that neighbor of x which is

in the BFS tree rooted at the leader.

If x is the leader, then x.parent = x.

Because of a fault, x.parent might not be the ID of x or of any

neighbor of x. In this case, we say that x.parent is unlawful.

5.2.2 Functions of DLE

Let N(x) be the set of neighbors of x, and U(x) = N(x) U {x}.

1. If v = (nlp, l, d) is a vector, we define successor (v) = (nlp, l, d+1),

the smallest vector that is larger than v.

www.manaraa.com
39

2. Min_Nbr_Vector(x) = min {y.vector: y ϵ U(x)}, the minimum

neighborhood vector of x.

3. Local_Minimum(x), Boolean, meaning that x is local minimum and

its own leader, and also a local root, i.e., x.leader = x.id, x.level = 0,

and x.leader = x.parent = x.

4. Good_Root(x), Boolean, meaning that x is a local minimum and its

own leader, and also a local root, i.e., x.leader = x.id, x.level = 0,

and x.leader = x.parent = x.

5. Good_Child(x), x is a good child, meaning that x.parent.vector =

Min_Nbr_Vector(x) and x.vector = successor(Min_Nbr_Vector(x)).

6. Parent(x) = p ϵ N(x) such that x.vector = successor(p.vector). If there

is no such neighbor of x, define Parent(x) = x.

5.2.3 Legitimate state of the Algorithm DLE

A configuration of the network is legitimate if

1. For any component C of the network, there is exactly one process,

lc ϵ C which is a good root, and every other process in C is a good

child.

2. For any component C of the network, x.vector = (lc.nlp, lc, d(x, lc))

for all x ϵ C, where d is (hop) distance between processes. That is,

all processes in C have the same leadership pair and level equal to

the distance between processes. That is, all processes in C have

the same leadership pair, and level equal to the distance to the

leader of component.

www.manaraa.com
40

5.2.4 Actions of DLE

The program of DLE is given in Table 1 as a list of actions.

 Table 1: Program of DLE for Process x

A1 Reset Local_Minimum(x) → x.nlp ← x.nlp – 1

 ⌐Good_Root(x) x.leader ← x.id

 x.level ← 0

 x.parent ← x

A2 Attach ⌐Local_Minimum(x) → Vector(x) ←

 ⌐Good_Child(x) successor (Min_Nbr_Vector(x))

 x.parent ← Parent(x)

Table 1

5.3 Example Execution

Figure 5.1 shows an example calculation. For simplicity in this

example, we let the adversary select every enabled process at each step.

Each process x is labeled with its vector, x.vector = (x.nlp, x.leader,

x.level). The start configuration, shown in (a), has three good roots,

enclosed by squares. The bad minima execute Action A1 of Table 1. and

the smallest new leadership pair floods the component, by all other

www.manaraa.com
41

processes executing Action A2. The resulting configuration, shown in (g),

is legitimate.

(a)

 (b)

www.manaraa.com
42

 (c)

 (d)

www.manaraa.com
43

 (e)

 (f)

www.manaraa.com
44

 (g)

Figure 5.1:

Example execution starting from an arbitrary state. (a) shows a
configuration with two components and ten different leadership pairs. In

(b), the four bad minima of (a), namely H, X, J, and Z, have executed

Action A1 of Table 1, creating four new leadership pairs. After flooding,
the configuration is legitimate, with surviving leadership pairs (−6, J) and

(−7, X), as shown in (g).

5.4 Proofs for DLE

We define a configuration to be clean if it has no bad minima.

Within one round after the cessation of faults, the configuration will be

clean, since every bad minimum will declare itself to be a leader, and

there is no action of any process which can create a bad minimum.

If the configuration is clean, each component can contain any

number of leadership pair in a component C. Then (nlp, l) will flood the

component, and eventually the leadership pair of every process in C will

be (nlp, l).

www.manaraa.com
45

When all components have done this, the configuration is legitimate.

Lemma 5.1 If at least one round has elapsed since the most recent link

change, the configuration is clean.

Proof: No execution by any process can cause any process become a bad

minimum, or to acquire an unlawful parent. Within one round, all bad

minima will execute Action A1, declaring themselves to leaders and

configuration will be clean.

Lemma 5.2 If the configuration is not legitimate, some process is

enabled.

Proof: We break the proof into three cases, either the configuration is not

clean, or there is some component which has more than one leadership

pair, or there is some process x such that x.level is not equal to the

distance from x to x.leader.

If a process x is a bad minimum or has an unlawful parent, then x

is enabled to execute Action A1 or A2.

If there is more than one leadership pair in a component, then

choose neighboring processes x and y which have different leadership

pairs. Without loss of generality, x.vector > y.vector. If x.nlp > y.nlp, or if

x.nlp = y.nlp and x.leader > y.leader, then x.vector > successor (y.vector),

and x is enabled to execute Action A2.

If there is only one leadership pair in each component, then there

is some process such that x.level is not the distance to its leader. We

break into cases. Suppose there is some process x such that x.level is

www.manaraa.com
46

larger than the distance from x to x.leader. Choose such an x which is

closest to its leader. Then x must have a neighbor y which is closer to the

leader has the correct value of y.level. Since x.level > y.level + 1, x is

enabled to execute Action A2. The other case is that there is some

process x such that x.level is smaller than the distance from x to

x.leader. Pick such an x whose value of x.level is minimum. Then y.level

≥ x.level for all y ϵ N(x), and thus x is a bad minimum, and can execute

Action A1.

Let Diam be the maximum diameter of any component.

Lemma 5.3 If at least Diam rounds have elapsed since the configuration

was clean, and no further faults have occurred, then the configuration is

legitimate.

Proof: No new leadership pairs will be created, since no process can

execute Action A1.

For any component C, let (nlp, l) be the minimum leadership pair

present in component C when the configuration is first clean. We claim

that l must be a process of C. Suppose l is not in C. Let x be the process

in C whose vector is minimum. Then x.leader = l. If x ≠ l, then x is a bad

minimum, contradiction.

We also claim that x.vector ≥ (nlp, l, d(x, l)) for any x ϵ C, since

otherwise, the component would contain a bad minimum.

For any 0 ≤ t ≤ Diam, within t rounds after the configuration is first

clean, all processes with distance t of l will have their final vectors; i.e., if

www.manaraa.com
47

d(x, l) ≤ t, then x.vector = (nlp, l, d(x,l)). Thus within Diam rounds after

the configuration is clean, i.e., after at most Diam + 1 rounds altogether,

the configuration will be legitimate.

Theorem 5.4 From an arbitrary configuration, DLE converges to a

legitimate configuration and is silent within Diam + 1 rounds, where

Diam is the largest diameter of any component of the network.

Proof: Convergence follows from Lemma 5.1 and 5.3. Silence follows from

that fact that if the configuration is legitimate, no process is enabled.

5.4.1 The Unfair Daemon

A distributed algorithm might be proved to converge in a finite

number of rounds, but still possibly never converge under the unfair

daemon, since that unfair daemon by proving that every computation of

DLE is finite.

Lemma 5.5 Every computation of DLE is finite.

Proof: Our proof is by contradiction. Suppose that γ0 → γ1 → … → γt →

γt+1 → … is an infinite computation of DLE. Since there are only finitely

many processes, some process must execute infinitely often.

If x.parent is unlawful, then x.parent becomes lawful the first time x

executes, and never again becomes unlawful. Thus, there can be only

finitely many steps of the computation to begin at a configuration after

that step, and thus, without loss of generality, there is no step at which

x.parent changes from unlawful to lawful for any x. Thus, at any step

where any process x executes, x.vector decreases.

www.manaraa.com
48

A process x can execute Action A1 only if it is a bad minimum.

There is no action of any process that can cause x to become a bad

minimum; thus, each process can execute A1 at most once. Thus,

without loss of generality, our computation does not contain any

instance of Action A1, and thus no new leadership pairs are created.

There can be at most n leadership pairs at γ0. Let x be a process

that executes an action infinitely many times. Since x.vector decreases at

each such execution, there must be some configuration γm after which x

does not change its leadership pair. Let d be the value of x.level at γm.

Since x.level must decrease every time x executes after γm, there can be

at most d remaining steps at which x executes an action, contradiction.

Theorem 5.6 DLE converges to a legitimate state under the unfair

daemon, and is silent.

Proof: By lemma 5.5, every computation of DLE must eventually reach a

configuration at which no process is enabled. By Lemma 5.2, this

configuration is legitimate.

www.manaraa.com
49

CHAPTER 6

DYNAMIC LEADER ELECTION WITH PRIORITY

Algorithm DLE, given in Chapter 5, selects an arbitrary member of

each component to be a leader of that component. In this section, we

introduce the requirement that the elected leader of each component be

the best process in the component, where “best” can be defined any

number of ways, depending on the application. Our method is to define

some kind of priority measure on all processes, and then make sure that

the elected leader is the Process which has the highest priority in the

component. For example, the process of highest priority could be the

process of least ID, or of greatest ID, or of greatest degree, i.e., number of

neighbors.

If no fault occurs for O(Diam) rounds, DLE always chooses a leader

for each component, but this leader could be any process of the

component. This leader is likely not to have been a leader before the

fault; it is even possible that the loss of one link of a component could

cause the component to elect a new leader, even if no processes of the

component were lost and no new processes were added. We show an

example of this in Figure 6.1. This behavior could be undesirable in

practice. If we define priority of processes in such a way that it is largely

unaffected by small faults, we will decrease the frequency of leadership

changes in practice.

www.manaraa.com
50

Figure 6.1:

In DLE, the loss of just one link can cause a change of leader. A

legitimate configuration is shown in (a). The link between F and G is lost

in (b), and F is the sole bad minimum. F declares itself to be a leader,
and within six rounds, the configuration is once again legitimate, and F

is the leader, as shown in (c).

6.1 Overview of DLEP

We assume an abstract function Priority of a process x, which may

depend only on the topology of the network, the ID of x, and data

obtained by x from the application layer. In other words, Priority(x) is not

affected by any change of the variables of our algorithm. We also assume

that priority(x) can be computed by x in O(1) time.

If S is any non-empty set of processes, define Max_Priority(S) =

max {Priority(x): x ϵ S}, and let Best(S) is unique, since we can use ID as a

tie-breaker. The output condition of DLEP is that, for any component C

of the network, Best(C) will be elected leader of C.

www.manaraa.com
51

DLEP consists of four phases. The first phase, which builds elects

a preliminary leader lc for each component C, and builds a preliminary

BFS tree of C rooted at lc, is exactly an emulation of the algorithm DLE

given in Section 6.2. The second and third phases of DLEP make use of

the preliminary BFS tree in each component to compute the final leader

and the final BFS tree of that component.

The second phase of DLEP consists of a convergecast wave in the

preliminary BFS tree. Let Tx be the subtree of the preliminary BFS tree

rooted at x. During the second phase, the intermediate leader of each x is

computed to be Best(Tx). Thus, the intermediate leader of lc is Best(C),

which will also be the final leader of C.

The third phase of DLEP consists of a broadcast wave, during

which every process is told the identity of Best(C), and selects that

process to be its final leader.

The fourth phase of DLEP consists of a flooding wave from Best(C)

which builds the final BFS tree in C.

6.2 Definition of DLEP

We now give the formal definition of Algorithm DLEP.

6.2.1 Variables of DLEP

For any process x, we have variables, as listed below. The

definitions of the variables given here refer to the values those variables

will have when the algorithm stabilizes.

www.manaraa.com
52

1. x.id , the ID of x. (This is not actually a variable of DLEP, since the

algorithm cannot change it.)

2. The following variables are used for the first phase of DLEP, which

 emulates DLE.

3. x.p_leader, the preliminary leader of x, which corresponds to

x.leader in DLE.

4. x.nplp, a non-positive integer called the negative preliminary leader

priority of x, which corresponds to x.nlp in DLE. The value of

x.nplp is the negative of the priority that x.p_leader assigned to

itself when it declared itself to be a preliminary leader,

5. x.p_level, the preliminary level of x, the distance from x to

x.p_leader, which corresponds to x.level in DLE.

6. x.p_vector = (x.nplp, x.p_leader, x.p_level), the preliminary vector

of x, which corresponds to x.vector in DLE. Preliminary vectors are

ordered lexically.

7. x.p_parent, the parent of x in the preliminary BFS tree, which

corresponds to x.parent in DLE.

8. x.i_leader, the intermediate leader of x, whose value in a stable

configuration is Best(Tx).

9. x.ilp, the intermediate leader priority of x, whose value in a stable

configuration is Priority(Best(Tx)).

10. x.i_vector = (x.ilp, x.i_leader), the intermediate vector of x.

Intermediate vectors are ordered lexically.

www.manaraa.com
53

11. x.f_leader, the final leader of x, whose value in a stable

configuration is Best(C), the elected leader of the component C that

x belongs to.

12. x.f_level , the final level of x, whose value in a stable configuration

is the distance from x to x.f_leader.

13. x.f_parent, whose value in a stable configuration is the parent of x

in the final BFS tree.

Although we list x.p_vector and x.i_vector as variables, they are actually

ordered tuples of other variables, and hence require no extra space.

6.2.2 Functions of DLEP

As in DLE, some of the functions of DLEP are given names which

are capitalized versions of the names of variables. In such cases, the

value of the function is what x believes the value of the variable should

be.

1. If (nplp, l, d) is a preliminary vector, we define successor (nplp, l, d)

= (nplp, l, d + 1), the smallest vector that is larger than (nplp, l, d).

2. Min_Nbr_P_Vector(x) = min {y.p_vector : y ϵ N(x) U {x}}, the

minimum neighbor preliminary vector of x.

3. Local_Minimum(x) ≡ Min_Nbr_P_Vector(x) ≥ x.p_vector, Boolean.

4. Good_Root(x) ≡ Local_Minimum(x) ^ (x.p_leader = x) ^ (x.p_level =

0), Boolean.

5. Good_Child(x) ≡ x.p_vector = successor (Min_Nbr_P_Vector(x)),

Boolean.

www.manaraa.com
54

6. P_Parent(x) = y ϵ N(x) such that y.p_vector = Min_Nbr_P_ Vector(x).

If there is more than one such neighbor of x, choose the one with

the smallest ID. If there is no such neighbor of x, define P_Parent(x)

= x.

7. P_Chldrn(x) = {y : Good_Child(y) and y.p_parent = x}

8. We define the Boolean function Local_P_Tree_Ok(x) on a process x

to mean that, as far as x can tell by looking at its variables and

those of its neighbors, the preliminary leader and the preliminary

BFS tree have been constructed. More formally, Local_P_Tree_Ok(x)

is true if the following conditions hold for x:

 x is either a good root or a good child.

 x.p_level = 0 if and only if x is a good root.

 x.p_leader = x if and only if x is a good root.

 y.p_leader = x.p_leader for all y ϵ N(x).

 |y.p_level − x.p_level| ≤ 1 for all y ϵ N(x).

 (Priority(x), x)

9. I_Vector(x) = max
 max {y.i_vector : y ϵ P_Chldrn(x)}

 x.i_leader if Good_Root(x)
10. F_Leader(x) =

 x.p_parent.f_leader otherwise

 0 if x.f_leader = x

11. F_Level (x) =
 1 + min {y.f_level: y ϵ N(x)} otherwise

www.manaraa.com
55

12. F_Parent(x) = p ϵ N(x) such that 1+ f_level(p) = f_level(x). If there is

more than one such neighbor of x, choose the one with the smallest

ID. If there is no such neighbor of x, define F_Parent(x) = x.

6.2.3 Legitimate Configurations for DLEP

We define a configuration of the network to be pre-legitimate if

1. For any component C of the network, there is exactly one process,

PLC ϵ C, which is a good root; and all other processes of C are good

children.

2. For any component C of the network, x.p_vector = (PLC.nplp, PLC,

d(x, PLC)) for all x ϵ C, where d(x, PLC) is the distance from PLC to x.

That is, all processes in C have the same preliminary leadership

pair, and preliminary level equal to the distance to the preliminary

leader of the component.

3. If x.p_leader ≠ x, then x.p_vector = successor(x.p_parent.p_vector),

i.e., x is a good child.

A configuration of the network is legitimate if it is pre-legitimate, and if,

for each component C and for all x ϵ C:

1. x.i_vector = (Priority(y), y), where y = Best(Tx), where Tx is the

subtree of the preliminary BFS tree of C rooted at x.

2. x.f_leader = Best(C).

3. x.f_level = d(x, Best(C)), the distance from x to Best(C).

4. x.f_parent = F_Parent(x).

www.manaraa.com
56

6.2.4 Actions of DLEP

 Table 2: Program of DLEP

A1 Reset Local_Minimum(x) → x.nplp ← x.nplp − 1

priority 1 ¬Good_Root(x) x.p_leader ← x.id

 x.p_level ← 0

 x.p_parent ← x

A2 Preliminary ¬Local_Minimum(x) → p_vector(x) ←

priority 1 BFS Tree ¬Good_Child (x) successor

 (Min_Nbr_Vector(x))

 x.p_parent ←

 P_Parent(x)

A3 Intermediate x.i_vector ≠ I_Vector(x) → x.i_vector ←

priority 2 Vector Local_P_Tree_Ok(x) I_Vector(x)

A4 Final x.f_leader ≠ F_Leader(x) → x.f_leader ←

priority 3 Leader Local_P_Tree_Ok(x) F_Leader(x)

A5 Final x.f_level ≠ F_Level(x) → x.f_level ←

priority 4 Level Local_P_Tree_Ok(x) F_Level(x)

 ∀y ϵ N(x): y.f_leader=x.f_leader

A6 Final x.f_parent ≠ F_Parent(x) → x.f_parent ←

priority 5 Parent Local_P_Tree_Ok(x) F_Parent(x)

 ∀y ϵ N(x): y.f_leader = x.f_leader

Table 2

www.manaraa.com
57

6.2.5 Explanation of Actions

Action A1 corresponds to Action A1 of DLE, while Action A2

corresponds to Action A2 of DLE. Together, these two actions cause the

preliminary leader, lC of each component C to be chosen, and the

preliminary BFS tree to be constructed.

Action A3 is the action of the convergecast wave that chooses the

intermediate vector for each process after the preliminary BFS tree has

been constructed. It is possible for some processes to execute A3

prematurely because they believe, based on local information, that the

preliminary BFS tree is finished; in these cases, these processes will

recompute their intermediate vectors later.

The final leader of the component C, namely, FLC, will be the

intermediate leader of lC. Action A4 is the action of the broadcast wave,

starting at lC, that informs every process of the choice of final leader.

After every process knows the final leader, Actions A5 and A6

construct the BFS tree, assigning to each process its final level and final

parent, in a broadcast wave starting at FLC.

6.3 Example Computation

In Figure 6.2, we show some steps of a computation of DLEP.

www.manaraa.com
58

 (a) (b)

 (c)

Figure 6.2:

Some configurations of a computation of DLEP on a component of a
network. In this example, we define Priority(x) = δx, the degree of x. (a)

shows the component after the preliminary BFS tree has been

constructed. The preliminary leader is F, and the preliminary parent
pointers are shown as arrows. Each process x is labeled with the ordered

pair (Priority(x), x). Other variables are not shown. (b) shows the values of

x.i_vector for each x, and the arrows still show preliminary parent
pointers. Other variables are not shown. (c) shows the values of

x.f_leader and x.f_level for each x, and the pointers of the final BFS tree

are indicated by arrows. The final leader is K, indicated by a double

circle. Other variables are not shown. At this step in the computation,
the configuration is legitimate.

www.manaraa.com
59

6.4 Proofs of DLEP

Our proof of correctness of DLEP uses the convergence stair

method. We define a sequence of benchmarks, each of which is a closed

predicate, i.e., if any benchmark holds, it will hold until the next fault.

The sequence is also logically nested, meaning that each benchmark is a

condition of the next benchmark.

 Benchmark B1: The preliminary BFS tree is complete, i.e., for each

component C, there is a unique process

PLC ϵ C such that x.p_vector = (l.nlp, PLC, d(x, PLC)) for any process

x ϵ C, where d is distance, and if x.p_parent = P_Parent(x) for all x.

Benchmark B1 holds when the first phase of DLEP is complete,

i.e., the emulation of DLE is done.

 Benchmark B2: Benchmark B1 holds, and, for any process x ϵ C,

x.ilp = Max_Priority(Tx) and x.i_leader = Best(Tx), where Tx is the

subtree of the preliminary BFS tree rooted at x.

Benchmark B2 holds when the second phase of DLEP is complete.

At that point, for each component C, PLC knows Best(C), since

PLC.i_leader = Best(C).

 Benchmark B3: Benchmark B2 holds, and for any process x ϵ C,

x.f_leader = Best(C).

Benchmark B3 holds when the third phase of DLEP is complete. At

that point, every process x has correctly identified its final leader.

www.manaraa.com
60

 Benchmark B4: Benchmark B3 holds, and for any process x ϵ C,

x.f_level = d(x, Best(C)), and x.f_parent = F_Parent(x).

Benchmark B4 holds when the fourth phase of DLEP is complete,

namely the BFS tree rooted at the final leader of each component is

finished.

The actions of DLEP are prioritized according to the benchmarks. Actions

A1 and A2 of Table 2 are the actions of first phase of DLEP, i.e., the

actions of the emulated DLE. Because of the hierarchical nature of the

code, these actions take precedence over the others, and thus the values

of the variables x.i_leader, x.f_leader, x.f_level, and x.f_parent do not

retard progress toward Benchmark B1.

Action A3 of Table 2 is the only action of the second phase. In a

convergecast wave in each component C, each process x sets x.ilp to

Max_Priority(Tx) and x.i_leader to Best(Tx). When this wave reaches PLC

for each C, Benchmark B2 holds.

Action A4 of Table 2 is the only action of the third phase. Initially,

PLC, for each C, sets its value of f_leader to its value of i_leader; since

Benchmark B2 holds, this value is Best(C). That value is then broadcast

to all processes in the component, and then Benchmark B3 holds.

Action A6 of Table 2 is the only action of the fourth phase. After

Benchmark B3 holds, there is exactly one process in each component C

which knows it is the final leader of C. In a flooding wave starting from

www.manaraa.com
61

that final leader, each process computes its distance to the final leader of

its component; Benchmark B4 then holds, and DLEP is silent.

We prove convergence of DLEP in a sequence of lemmas.

Throughout the remainder of this section, we assume that we are given a

computation of DLEP, which starts at an arbitrary configuration. Of

course, this start configuration could have resulted from a legitimate

configuration, followed by any number of faults. By the definition given

in Section 2, a computation has no faults; i.e., when a fault occurs, the

next configuration is the start of a new computation.

Lemma 6.1 Benchmark B1 holds within Diam + 1 rounds.

Proof: This follows from Lemma 5.3, since the first phase of DLEP

precisely emulates DLE.

Lemma 6.2 If at least t rounds have elapsed after Benchmark B1 holds,

and if x is a process such that d(x, PLC) ≥ Diam − t − 1, then

x.sub_flp = max {y.flp: y ϵ Tx}

Proof: By induction on t. If t = 0, the statement is vacuous. Otherwise,

by the inductive hypothesis, the statement of the lemma holds for all y ϵ

P_Chldrn(x). Within one more round, x will execute Line 8 of the code,

and we are done.

Lemma 6.3 Benchmark B2 holds within Diam + 1 rounds after

Benchmark B1 holds.

Proof: Apply Lemma 6.2 for t = Diam + 1.

www.manaraa.com
62

Lemma 6.4 If at least t ≥ 1 rounds have elapsed after Benchmark B2

holds, and if x is a process such that d(x, PLC) ≤ t − 1, then x.f_leader =

Best(C).

Proof: By induction on d(x, PLC). We first show that the result holds for x

= PLC. When Benchmark B2 holds, PLC.sub_flp = Best(C), and after at

least one additional round has elapsed, PLC.f _leader = Best(C). Suppose

d(x, PLC) = d > 0, and t ≥ d+1. After t−1 rounds have elapsed,

Parent(x).f_leader = Best(C), by the inductive hypothesis. Within one

more round, x.f_leader = Best(C).

Lemma 6.5 Benchmark B3 holds within Diam + 1 rounds after

Benchmark B2 holds.

Proof: Apply Lemma 6.4. If at least t ≥ 1 rounds have elapsed after for t =

Diam + 1.

Lemma 6.6 Let x be a process in a component C, let d = d(x, Best(C)),

and let t ≥ 0, and suppose that at least t rounds have elapsed after

Benchmark B3 holds. Then

(a) x.f_level ≥ min {t, d}.

(b) If t > d then x.f_level = d.

Proof: If d = 0, then (a) is trivial, and (b) follows from that fact that

F_Level (Best(C)) =0.

We prove the case d > 0 by induction on t. If t = 0, then (a) is trivial, and

(b) is vacuous. Suppose t > 0. Note that NL(x) = N(x), since Benchmark

www.manaraa.com
63

B3 holds. By the triangle inequality, d(y, Best(C)) ≥ d−1 for all y ϵ N(x).

Since d > 0, there exists z ϵ N(x) such that d(z, Best(C)) = d − 1.

After t − 1 rounds y.f_level ≥ min t − 1, d − 1 by the inductive

hypothesis for all y ϵ N(x), and thus, F_Level (x) ≥ 1 + min {t − 1, d − 1} =

min {t, d}. After one more round, x.f_level ≥ min {t, d}, and (a) is proved.

We now prove (b). Assume t > d. By (a), x.f_level ≥ d. After t − 1 rounds

have elapsed, by the inductive hypothesis, z.f_level = d − 1, and thus

F_Level(x) ≤ d. Within one more round, we have x.f_level ≤ d, and we are

done.

Lemma 6.7 Benchmark B4 holds within Diam + 1 rounds after

Benchmark B3 holds.

Proof: Apply Lemma 6.6(b) for t = Diam + 1.

Corollary 6.8 Within 4Diam + 4 rounds after the initial configuration,

DLEP is silent, and the network is in a legitimate configuration.

6.4.1 The Unfair Daemon

We now prove that DLEP works under the unfair daemon.

Lemma 6.9 Every computation of DLEP contains only finitely many

instances of a structural action.

Proof: The forgetful function is a morphism from DLEP to DLE. Any

structural action of DLEND maps to a structural action of DLE. By

Lemma 6.5, we are done.

Lemma 6.10 If a computation of DLEP contains no structural action,

then it contains only finitely many instances of Action A3.

www.manaraa.com
64

Proof: By contradiction. Suppose a computation of DLEP contains no

structural action and also contains infinitely many instance of Action A3.

Pick a process x which executes Action A3 infinitely many times. If there

is more than one choice, pick x to maximize x.p_level .

Since y.p_level > x.p_level for all y ϵ P_Chldrn(x), there is some

configuration γm in the computation after which no member of

P_Chldrn(x) executes Action A3. Thus, after γm, the value of I_Vector(x)

does not change, and therefore x can execute Action A3 at most once

after γm, contradiction.

Lemma 6.11 If a computation of DLEP contains no instance of Action

A1, A2, or A3, then it contains only finitely many instances of Action A4.

Proof: By contradiction. Pick a process x which executes Action A4

infinitely many times. If there is more than one choice, pick x to

minimize x.p_level.

If x.p_level = 0, then F_Leader(x) = x.i_leader, which does not change.

Otherwise, since x.p_parent.p_level < x.p_level , F_Leader(x) =

x.parent.f_leader, which does not change. Thus, x can execute Action A4

at most once, contradiction.

Lemma 6.12 If a computation of DLEP contains no instance of Action

A4, then it contains only finitely many instances of Action A5.

Proof: For any process x, x.f_leader does not change, and thus x.f_level

cannot increase. Each time x executes Action A5, the value of x.f_level

www.manaraa.com
65

decreases, and it cannot be less than zero. Thus, no process can execute

Action A5 infinitely many times.

Lemma 6.13 If a computation of DLEP contains no instance of Action A4

or A5, then it contains only finitely many instances of Action A6.

Proof: For each process x, the value of P_Parent(x) does not change;

thus, x can execute Action A6 at most once.

Theorem 6.14 Every computation of DLEP is finite, and ends at a

legitimate state.

Proof: By Lemma 6.9, every computation contains only finitely many

instances of a structural action. By Lemma 6.10, after the last execution

of a structure action, there are only finitely many instances of Action A3.

By Lemma 6.11, after the last execution of Action A3, there are only

finitely many instances of Action A4. By Lemma 6.12, after the last

execution of Action A4, there are only finitely many instances of Action

A5. By Lemma 6.13, after the last execution of Action A5, there is only

finitely many instances of Action A6, and then there are no more actions,

i.e., DLEND is silent.

By Corollary 6.8, the last configuration of the computation is legitimate.

www.manaraa.com
66

CHAPTER 7

 DYNAMIC LEADER ELECTION NO DITHERING

Post–legitimate Configurations. Suppose that γ is a legitimate

configuration for a distributed algorithm A on a given network G.

Suppose G′ is a new network that is obtained from G by an arbitrary

topological change; i.e., the processes of G′ are the same as those of G,

and no variables of any process have been changed, but the links may be

different. This change defines a configuration γ′ on G′, where each

process has the same values of its variables as at γ. If a process x

contains a variable which is a pointer to a process y which is a neighbor

of x in G, and if y is no longer a neighbor of x in γ′, the pointer does not

change, but it has nothing to point to. In this case, we say that that

pointer is unlawful at γ′. We say that γ′ is post–legitimate configuration.

We now present Algorithm DLEND for the dynamic leadership

election problem. DLEND has the following properties:

1. Self Stabilization and Silence: Starting from an arbitrary

configuration, within O(Diam) rounds, a legitimate configuration is

reached and there are no further actions.

2. Incumbent Priority: Starting from a post–legitimate configuration,

if a component C contains at least one process which was a leader

at the previous legitimate configuration, one of those processes will

be elected leader of that component.

www.manaraa.com
67

3. No Dithering: Starting from a post–legitimate configuration, no

process will change its choice of leader more than once. DLEND

shares the first property with Algorithms DLE and DLEP. The

second property is an extension of the priority property of DLEP.

To achieve the incumbent and no dithering properties, we

introduce colors to guide the order of computation.

7.1 Overview of DLEND

DLEND is very much like DLEP, except that, to achieve the no

dithering property, each process is given a color, which is an integer in

the range [0 . . . 5]. The color of a process is related to its current role in

the computation. The purpose of the colors is to ensure that final leader

of a process is not computed too early. In a computation that starts from

a post–legitimate configuration, the processes pass through the following

sequence of colors.

1. In a legitimate configuration, x.color = 0 for each process x.

2. Each color changes to 1 when the preliminary BFS tree is being

constructed.

3. All processes change color to 2 in a convergecast wave when the

preliminary BFS tree is completed.

4. All processes change color to 3 in a broadcast wave after the

preliminary leader has color 2.

www.manaraa.com
68

5. All processes change color to 4 in a convergecast wave that

computes the intermediate vector of each process. Each process x

chooses as its intermediate leader a process in the subtree Tx

which was a leader in the previous legitimate configuration, if any.

It is possible for a process to change color to 2, 3, or 4

prematurely, and then go back to color 1. This can occur when

some of the preliminary calculations of the preliminary BFS

tree are incorrect, and need to be redone. However, when a good

root changes its color to 4, the preliminary BFS tree has been

correctly calculated.

6. All processes change color to 5 in a broadcast wave, during which

each process chooses a new value of the final leader. All processes

in a component choose the same final leader, which is the

intermediate leader of the preliminary leader.

Finally, in a flooding wave starting from the final leader, all processes

change their color to 0. They then construct the final BFS tree, and

eventually the configuration is legitimate and silent.

7.2 Definition of DLEND

7.2.1 Variables of DLEND

DLEND uses all the variables of DLEP, plus some additional variables

listed below.

www.manaraa.com
69

 x.former_leader_in_subtree, Boolean, meaning that Tx contains a

process which was a final leader in the last legitimate

configuration.

 x.color ϵ {0, 1, 2, 3, 4, 5}.

We also redefine one variable.

 x.i_vector = (x.former_leader_in_subtree, Priority(x.i_leader),

 x.i_leader)

7.2.2 Functions of DLEND

DLEND uses the following functions defined for DLEP in Section 4.

 successor(nplp, l, d) = (nplp, l, d + 1), where (nplp, l, d) is a

preliminary vector.

 Min_Nbr_P_Vector(x).

 Local_Minimum(x).

 Good_Root(x).

 Good_Child (x).

 P_Parent(x).

 P_Chldrn(x).

 Priority(x).

 Local_P_Tree_Ok(x)

One function of DLEP is redefined for DLEND.

 (Is_Leader(x), Priority(x), x)

 I_Vector(x) = max

 max {y.i_vector : y ϵ P_Chldrn(x)}

www.manaraa.com
70

DLEND uses a number of additional functions, as well.

 Local_I_Vector_Ok(x), Boolean, which is true if x.i_vector =

I_Vector(x).

 Local_I_Leader_Ok(x), Boolean, which is true if either x.i_leader =

x, or x.i_leader = y.i_leader for some y ϵ P_Chldrn(x).

Note that Local_I_Vector_Ok(x) => Local_I_Leader_Ok(x), but that

the converse does not hold.

 Local_F_Leader_Ok(x), Boolean, which is true if either x is a good

root and x.f_leader = x.i_leader, or x is a good child and x.f_leader =

x.p_parent.f_leader.

 Is_Leader(x), Boolean, meaning that x.f_leader = x.

If x is a good child, we say that x is color compatible with its parent if

x.color, x.parent.color ϵ {1, 2, 3, 4, 5} and x.color = x.parent.color is odd,

x.color is even and |x.parent.color − x.color | ≤ 1, x.color, x.parent.color

ϵ {0, 5}, or x.color, x.parent.color ϵ {0, 1}.

The allowable combinations of colors of a process and its preliminary

parent are illustrated in Figure 7.1.

www.manaraa.com
71

Figure 7.1:

Compatible combinations of colors for a true child x and its preliminary
parent. All other combinations are incompatible.

Define the Boolean function Color_Error(x) to be true if either x is a

true root which is color incompatible with some y ϵ P_Chldrn(x), or x is a

true child which is color incompatible with x.p_parent.

Define the Boolean function P_Error(x) to be true if x.color ∉ {0, 1}

and there is some y ϵ N(x) such that y.p_vector > successor(x.p_vector),

i.e., x perceives that y is enabled to execute Action A3. Define the

Boolean function I_Error(x) to be true if either x.color = 4 and

¬Local_I_Vector_Ok(x) or x.color = 5 and ¬Local_I_Leader_Ok(x).

Let Error(x) be the Boolean function which is true if Color_Error(x),

P_Error(x), or I_Error(x).

Let Normal_Start(x) be the Boolean function which is true if x.color = 0

and any one of the following conditions holds.

1. ¬Local_I_Leader_Ok(x).

2. ¬Local_F_Leader_Ok(x).

3. x is a good root and y.color = 1 for some y ϵ P_Chldrn(x).

4. x is a good child and x.p_parent.color = 1.

www.manaraa.com
72

Let Can_Start(x) be the Boolean function which is true if any one of the

following conditions holds.

1. x.color ≠ 1 and Error(x).

2. Normal_Start(x).

We define additional Boolean functions for DLEND:

 Is_Leader(x), which is true if x.f_leader = x.

Additional non-Boolean functions of DLEND are defined below.

 0 if x.f_leader = x

 F_Level(x) =

 1 + min {y.f_level: y ϵ N(x)} otherwise

 F_Parent(x) = p ϵ N(x) such that p.color = 0 and 1 + f_level(p) =

f_level(x). If there is more than one such neighbor of x, choose the

one with the smallest ID. If there is no such neighbor of x, define

F_ Parent(x) = x.

www.manaraa.com
73

7.2.3 Actions of DLEND

Table 3: Program of DLEND

A1 Start Can_Start(x) → x.color ← 1

priority 1

A2 Declare Local_Minimum(x) → x.nplp ← x.nplp − 1

priority 2 P–Leader ¬Good_Root(x) x.p_leader ← x.id

 x.p_level ← 0

 x.color ← 1

 x.p_parent ← x

A3 P–Attach ¬Local_Minimum(x) → p_vector(x) ←

priority 3 ¬Good Child(x) successor(

 Min_Nbr_Vector(x))

 x.color ← 1

 x.p_parent ←

 P_Parent(x)

A4 Wave 2 x.color = 1 → x.color ← 2

priority 4 ∀y ϵ N(x):y.color ϵ {1, 2}

∀y ϵ P_Chldrn(x):y.color=2

Local_P_Tree_Ok(x)

¬Error(x)

A5 Wave 3 x.color = 2 → x.f_leader ←

priority 5 Good_ Root(x) V F_Leader(x)

www.manaraa.com
74

 (x.p_parent.color = 3) x.color ← 3

 ∀y ϵ N(x): y.color ϵ {2, 3}

Local_P_Tree_Ok(x)

¬Error(x)

A6 Convergecast x.color = 3 → x.i_vector ←

priority 6 Intermediate ∀y ϵ N(x):y.color ϵ {3, 4} I_Vector(x)

 Leader Local_P_Tree_Ok(x) x.color ← 4

 ¬Error(x)

A7 Broadcast x.color = 4 → x.f_leader ←

Priority 7 Final Good_Root(x) V F_Leader(x)

 Leader (x.p_parent.color = 5) x.color ← 5

 ∀y ϵ N(x):y.color ϵ {4, 5}

 Local_P_Tree_Ok(x)

 ¬Error(x)

A8 Become x.color = 5 → x.f_level ← 0

priority 8 Final ∀y ϵ N(x):y.color = 5 x.f_parent ← x

 Leader x.f_leader = x x.color ← 0

 Local_P_Tree_Ok(x)

A9 F–Attach x.color = 5 → x.f_level ← 0

priority 8 ∀y ϵ N(x):y.color ϵ {5, 0} x.f_parent ←

 ∃y ϵ N(x):y.color = 0 F_Parent(x)

 Local_P_Tree_Ok(x) x.color ← 0

 ¬Error(x)

www.manaraa.com
75

A10 F–Level x.color = 0 → x.f_level ← F_Level(x)

Priority 8 ∀y ϵ N(x):y.color = 0 x.f_parent ←

 x.f_level ≠ F_Level(x) F_Parent(x)

 Local_P_Tree_Ok(x)

 ¬Error(x)

A11 F–Parent x.color = 0 → x.f_parent ←

F_Parent(x)

priority 9 ∀y ϵ N(x):y.color = 0

 x.f_parent ≠ F_Parent(x)

 Local_P_Tree_Ok(x)

 ¬Error(x)

Table 3

7.2.4 Explanation of Actions

Action A1 changes the color of process to 1, indicating that

computation of the preliminary BFS tree is to start, or restart. A process

x is enabled to execute A1 when it decides, based on the values of its

neighbors, that it must start the computation of the preliminary BFS

tree, or that there has been a fault that cannot be corrected without

restarting that computation. Color 1 is “contagious,” i.e., if x.color = 0

and a neighbor process has color 1, x can execute A1.

www.manaraa.com
76

Action A2 corresponds to Action A1 of DLE, while Action A3

corresponds to Action A2 of DLE. Together, these two actions cause the

preliminary leader, lC of each component C to be chosen, and the

preliminary BFS tree to be constructed. While a process is executing

those actions, its color remains 1.

Actions A4 and A5 have no analog in Algorithms DLE and DLEP.

All processes execute A4 from the bottom of the preliminary BFS tree,

changing their colors to 2, and then top-down in the same tree, changing

their colors to 3. No other variables are changed, so these actions do not

contribute to computation of the preliminary, intermediate, or final

leaders. This apparently pointless “waste” of 2Diam rounds is needed to

ensure the no dithering property of DLEND, as we explain in our

discussion of Figure 7.3.

Action A6 is the action of the convergecast wave that chooses the

intermediate vector for each process after the preliminary BFS tree has

been constructed. As each process executes A6, its color changes to 4.

It is possible for some processes to execute A6 prematurely

because they believe, based on local information, that the preliminary

BFS tree is finished; in these cases, these processes will recompute their

intermediate vectors later. However, the no dithering property is

guaranteed by the fact that, if the computation started from a post–

legitimate state, no good root will ever execute Action A6 unless it is the

www.manaraa.com
77

actual preliminary leader and the preliminary BFS tree has been

correctly constructed.

The final leader of the component C, namely, FLC, will be the

intermediate leader of lC. Action A7 is the action of the broadcast wave,

starting at lC, that informs every process of the choice of final leader.

Each process changes its color to 5 when it executes A7.

When FLC executes A7, it then executes Action A8, changing its

color to 0, starting construction of the final BFS tree. All processes

change their color to 0 in a flooding wave starting from FLC, as they

execute Action A9.

Actions A10 and A11 complete the construction of the final BFS tree,

assigning to each process its final level and final parent.

7.3 Example Computations

In Figure 7.2, we show some steps of a computation of DLEND

starting from a configuration where the preliminary BFS tree has been

correctly constructed.

www.manaraa.com
78

 (a) (b)

 (c)

Figure 7.2:

We show some steps of DLEND for a component of a network, where we

take Priority(x) = δx, the degree of x. (a) shows a network after the

preliminary BFS tree has been constructed, and all colors are 2.
Is_Leader holds for D, W, and V. The preliminary leader is F, and the

preliminary parent pointers are shown as arrows. Each process x is

labeled with its leadership triple (Is_Leader(x), Priority(x), x). The
maximum (using lexical ordering) leadership triple is that of W, which

will thus eventually be chosen to be the final leader. Other variables are

not shown. (b) shows the values of x.i_vector for each x, and the arrows
still show preliminary parent pointers, at a configuration where all

processes have color 4. For each process x, the intermediate vector

x.i_vector is shown. The value of x.i_vector is the maximum leadership

triple in Tx. Other variables are not shown. (c) shows the final values of
x.f_leader and x.f_level for each x, at a step when the configuration is

legitimate. All processes have color 0. The pointers of the final BFS tree,

rooted at the final leader W, are indicated by arrows. Other variables are
not shown.

www.manaraa.com
79

In Figure 7.3, we illustrate the role that the “extra” colors, 2 and 3,

play in preventing premature execution of Action A7, and thus ensuring

the no dithering property. We show a “worst case” scenario, where a tree

has been constructed which is not the correct preliminary BFS tree, but

no process in that tree can detect that. The chain of three processes on

the right side of each figure is not part of the tree, but that fact cannot be

detected by its neighboring process in the tree.

The situation will be resolved if the daemon selects the upper right

process in the figure, but if the unfair daemon never selects that process,

ultimately the convergecast Action A6 wave, where all colors change to 4,

becomes unable to proceed. The tree becomes deadlocked, and

eventually the daemon is forced to select the upper right process.

 (a) (b)

www.manaraa.com
80

 (c) (d)

 (e)

Figure 7.3:

Example computation starting from a post–legitimate state, showing

how colors prevent processes from executing Action A7 more than once.

www.manaraa.com
81

7.4 Proofs of DLEND

Throughout this subsection, let 0 → γ1 → … γt – 1 → γt → … be a

computation of DLEND.

Lemma 7.1 contains only finitely many structural actions.

Proof: The forgetful function is a morphism from DLEND to DLE. Any

structural action of DLEND maps to a structural action of DLE. By

Lemma 5.5, we are done.

Let S be the set of processes which execute infinitely many color actions

during .

Lemma 7.2 contains only finitely many configurations where

x.color = 4 and ¬Local_I_Vector_Ok(x) for some x ϵ S.

Proof: By Lemma 7.1, we can assume, without loss of generality, that

contains no structural action. Pick x ϵ S. If there are only finitely many

configurations of where x.color = 4, we are done. Otherwise, since

x ϵ S, x must execute Action A6 infinitely many times during . Thus,

x.color = 4 during each of infinitely many intervals.

Let γs · · · → · · · → γt be one of those intervals, where s > 0. By definition

of A6, Local_I_Vector_Ok(x) holds at γs.

The only action that can change the value of i_vector are A6. Thus,

I_Vector(x) remains unchanged during the interval. If y ϵ P_Chldrn(x),

then y cannot execute either A6 or A7 during the interval, and thus

I_Vector(y) remain unchanged during the interval. It follows that

Local_I_Vector_Ok(x) holds throughout the interval.

www.manaraa.com
82

Lemma 7.3 contains only finitely many configurations where

x.color =5 and ¬Local_I_Leader_Ok(x) for some x ϵ S.

Proof: By Lemma 7.1, we can assume, without loss of generality, that

contains no structural action. By Lemma 7.2, we can assume, without

loss of generality, that contains no configurations where x.color = 4

and ¬Local_I_Vector_Ok(x) for some x ϵ S.

Suppose x ϵ S and x executes Action A7 infinitely often in . By definition

of that action, Local_I_Leader_Ok(x) holds immediately x executes A7 and

will remain true until some y ϵ P_Chldrn(x) executes Action A6. However,

as long as x.color = 5, y cannot execute A6, and thus

Local_I_Leader _Ok(x) will remain true.

Lemma 7.4 contains only finitely many configurations where

x.color = 5 and ¬Local_F_Leader_Ok(x) for some x ϵ S.

Proof: By Lemma 7.1, we can assume, without loss of generality, that

contains no structural action. Pick x ϵ S. If there are only finitely many

configurations of where x.color = 5, we are done. Otherwise, since

x ϵ S, x must execute Action A8 infinitely many times during . Thus,

x.color = 5 during each of infinitely many intervals.

Let γs · · · → · · · → γt be one of those intervals, where s > 0. By definition

of A7, Local_F_Leader_Ok(x) holds at γs. Either x is a good root, or

x.parent.color = 5 at γs-1.

The only action that can change the value of f_leader is A7. Thus,

www.manaraa.com
83

x.p_leader does not change during the interval. x.p_parent cannot

execute A7 during the interval, and thus Local_F_Leader_Ok(y) remain

true during the interval.

Lemma 7.5 If x ∉ S and y ϵ Tx ∩ S, then eventually y.color ϵ {1, 2}.

Proof: By induction on y.p_level.

Lemma 7.6 If x ∉ S and x ϵ Ty ∩ S, then eventually y.color ϵ {1, 2}.

Proof: By backwards induction on y.p_level .

Lemma 7.7 If x ∉ S, then Tx ∩ S = Ø.

Lemma 7.8 If x ∉ S and x ϵ Ty, then y ∉ S.

Proof: Use the other lemmas.

Lemma 7.9 Any computation of DLEND is finite.

Lemma 7.10 If no action of DLEND is enabled, then the configuration is

legitimate.

Lemma 7.11 Let γ0 be a post–legitimate configuration, and let L be the

set of all processes for which x.f_leader = x at γ0.

(a): For any component C, Any computation of DLEND that begins at γ0

elects some member of C ∩ L to be the leader of C, provided C ∩ L ≠ Ø.

(b): For any process x, during any computation of DLEND which begins

at γ0, the value of x.f_leader changes at most once.

www.manaraa.com
84

CHAPTER 8

 SKETCHES OF PROOFS

DLE. The proof of correctness of DLE is fairly simple.

After one round of a computation of DLE has elapsed, every

process is either a true child or a true root, and, in each component C,

the leadership pair of some true root lC is the minimum leadership pair

in that component. Within Diam additional rounds, a BFS tree is

constructed in C rooted at lC. Thus, DLE converges within O(Diam)

rounds, and is silent upon reaching a legitimate configuration.

A distributed algorithm might be proved to converge in a finite

number of rounds, but still possibly never converge under the unfair

daemon, since that daemon might never select a specific enabled

process. We prove that DLE works under the unfair daemon by proving

that every computation of DLE is finite.

For each process x, the value of x.vector cannot decrease, and in

fact, at every step of the computation, x.vector increases for some

process x. Furthermore, from the initial configuration, we can compute

an upper bound on the number of possible future values of x.vector.

Thus, x can execute only finitely many times during the computation,

and the computation thus cannot be infinite.

DLEP. The proof of DLEP uses the convergence stair method. We define a

nested sequence of benchmarks, each of which is a closed predicate, and

the last one of which is legitimacy.

www.manaraa.com
85

There is a morphism from DLEP to DLE, meaning that every

configuration of DLEP maps to a configuration of DLE, and that this

mapping is consistent with the actions of the algorithms. From the fact

that DLE is correct and silent under the unfair daemon, we can thus

conclude that every computation of DLEP eventually reaches a

configuration where first benchmark holds. i.e., the preliminary BFS tree

is complete.

We define the next benchmark to mean that all values of i vector

are correct, the next benchmark to mean that all values of f_leader are

correct, and the fourth and last benchmark to mean that the

configuration is legitimate.

We can show that it takes O(Diam) rounds to achieve the first

benchmark, and O(Diam) additional rounds to achieve each subsequent

benchmark. Thus, DLEP converges in O(Diam) rounds.

To prove that DLEP works under the unfair daemon, we prove that

every computation of DLEP is finite. Given a computation of DLEP, we

have, from the properties of DLE and the morphism of DLEP to DLE, that

 contains only finitely many instances of Actions A1 and A2. We then

prove that, after the last instance of one of those actions, contains only

finitely many instances of Action A3. We then prove that, after the last

instance Action A3, there are only finitely many instances of Action A4.

Proceeding in this fashion, we eventually prove that has only finitely

many actions, and thus ends at a configuration where no process is

www.manaraa.com
86

enabled. We then prove that if no process is enabled, the configuration is

legitimate.

DLEND. DLEND elects both a preliminary leader and a final leader in

each component, but uses colors to control the order of actions, in order

to enforce the incumbent and no dithering properties.

Consider an action which begins at post–legitimate

configuration, which implies that every process has color 0. If the

configuration of a component C differs only slightly from legitimate, it

could happen that DLEND converges without changing the color of any

process, and where every process has the same final leader as initially.

Otherwise, we can prove that no process has color 5 until after the

preliminary BFS tree is constructed. After that, each process changes its

color to 5 exactly once, at which time, and no other, it can change its

choice of final leader. All processes in C will choose the same final leader.

Each process of C will then, just once, change its color to 0, after which

the final BFS tree is constructed rooted at the elected final leader.

We also need to prove that, starting at any configuration, DLEND

is eventually silent. Suppose is a computation of DLEND. By the result

we proved for DLE, can contain only finitely many instances of a

structural action. We then prove that Error(x) can be true for some

process x only finitely many times, after which there can be only finitely

many instances of a color action. After that, all colors are 0, and the only

www.manaraa.com
87

actions that can be enabled are A10 and A11. After finitely many steps,

there are no more actions, and the configuration is legitimate.

www.manaraa.com
88

CHAPTER 9

CONCLUSION AND FUTURE WORK

We present three silent self-stabilizing asynchronous distributed

algorithms for the leader election problem in a dynamic network with

unique IDs, using the composite model of computation. A leader is

elected for each connected component of the network. A BFS tree is also

constructed in each component, rooted at the leader. This election takes

O(Diam) rounds, where Diam is the maximum diameter of any

component. All three algorithms work under the unfair daemon.

The three algorithms differ in their leadership stability. The first

algorithm, which is the fastest in the worst case, chooses an arbitrary

process as the leader. The second algorithm chooses the process of

highest priority in each component, where priority can be defined in a

variety of ways. The third algorithm has the strictest leadership stability.

If the configuration is legitimate, and then any number of topological

faults occur at the same time but no variables are corrupted, the third

algorithm will converge to a new legitimate state in such a manner that

no process changes its choice of leader more than once, and each

component will elect a process which was a leader before the fault,

provided there is at least one in that component.

This work can be extended in various ways. It would be useful to

relax the conditions for "no dithering" further, meaning, one can explore

if it is possible to maintain this property even in worse scenarios.

www.manaraa.com
89

Another area to investigate could be the application of the proposed

dynamic leader election algorithms in the K-Clustering algorithms [8] or

Group Membership problem. Can we use the proposed solutions to

make those protocols more suitable in dynamic environment?

www.manaraa.com
90

BIBLIOGRAPHY

1. N. Malpani, J.L. Welch, and N. Vaidya, “Leader Election

Algorithms for Mobile Ad Hoc Networks,” Proc. Fourth Int’l

Workshop Discrete Algorithms and Methods for Mobile Computing
and Comm., pp. 96-103, 2000.

2. D Peleg. Distributed Computing A Locality-Sensitive Approach.

Society for Industrial and Applied Mathematics, 2000.

3. J Sun. Mobile ad hoc networking: An essential technology for

pervasive computing. In Proceedings International Conferences on
Info-Tech & Info-Net, pages 316-321, 2001.

4. Carla-Fabiana Chiasserini and Ramesh R. Rao. Pulsed battery
discharge in communication devices. In MOBICOM, pages 88-95,

1999.

5. M.Scott Corson, Joseph P. Macker, and Gregory H. Cirincione.

Internet-based mobile ad hoc networking. IEEE Internet Computing,

3(4):63-70, 1999.

6. Charles E Perkins. Ad hoc networking. Addison Wesley Professional,

2001.

7. A. Lerner I. Chlamtac. Fair algorithms for maximal link activation in

multi-hop radio networks. IEEE Transactions on Communications,

35(7), 1987.

8. A. K. Datta, L. L. Larmore, and P. Vemula. Self-stabilizing leader

election in optimal space. In 10th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), pages

109–123, Detroit, MI, November 2008. Also to appear in Theoretical

Computer Science.

9. M Weiser. Hot topics: Ubiquitous computing. IEEE Computer,

26(10):71-72, Oct 1993.

10. Deborah Estrin, Ramesh Govindan, John S. Heidemann, and Satish

Kumar. Next century challenges: Scalable coordination in sensor

networks. In MOBICOM, pages 263-270, 1999.

11. Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next

century challenges: Mobile networking for “smart dust”. In MOBICOM,
pages 271-278, 1999.

www.manaraa.com
91

12. Emmanuelle Anceaume, Maria Gradinariu, and Matthieu Roy. Self-

organizing systems case study: peer-to-peer systems.

13. Rebecca Ingram, Patrick Shields, Jennifer E. Walter, and Jennifer L.

Welch. An asynchronous leader election algorithm for dynamic
networks. In IPDPS, pages 1–12, 2009.

14. G.Bosilca T. Angskun, G. Fagg, J. Pjesivac-Grbovic, and J. Dongara.

Self-healing network for scalable fault tolerant runtime environments.
DAPSYS 2006, 6th Australian-Hungarian Workshop on Distributed and

Parallel Systems, pages 21-23, September 2006.

15. Satoshi Asami, Nisha Talagala, and David A. Pattersin. Designing a

self-maintaining storage system. In IEEE Symposium on Mass Storage

Systems, pages 222-233, 1999.

16. JD Strunk and GR Ganger. A human organization analogy for self-

*systems. Technical report, FCRC Proceedings of the first Workshop on
Algorithms and Architectures for Self-Managing Systems In conjuction

with Federated Computing Research Conference, Jun 2003.

17. EW Dijkstra. Ewd386 the solution to a cyclic relaxation problem. In
Selected writings on Computing: A personal Perspective, pages 34-35.

Springer-Verlag, 1982. EWD386’s original date is 1973.

18. EW Dijkstra. Self stabilizing systems in spite of distributed control.

Communications of the Association of the Computing Machinery,

17:643-644, 1974.

19. A Arora. A foundation of fault-tolerant computing. Ph.D. dissertation,

The University of Texas at Austin, Dec 1992.

20. Anish Arora and Mohamed G. Gouda. Closure and Convergence: A

foundation of fault-tolerant computing. IEEE Trans. Software Eng.,

19(11):1015-1027, 1993.

21. S Dolev. Self-Stabilization. The MIT Press, 2000.

22. J. Heidemann and R. Govindan. An overview of embedded sensor

networks, November 2004.

http://www.isi.edu/johnh/PAPERS/Heidemann04a.html.

23. Josep L. W. Kesels. An exercise in proving self-stabilzation with a

variant function. Inf. Process. Lett., 29(1):39-42, 1988.

www.manaraa.com
92

24. Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Trans.

Computers, 43(9):1026-1038, 1994.

25. Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory

requirements for silent stabilization (extended abstract). In PODC,
pages 27-34, 1996.

26. Yehuda Afek and Shlomi Dolev. Local stabilizer. In ISTCS, pages 74-

84, 1997.

27. Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-

stabilzation by local checking and correction (extended abstract). In
FOCS, pages 268-277, 1991.

28. G Varghese. Self-stabilization by local checking and correction. Ph.D.
dissertation, MIT, 1993.

29. G Varghese. Self-stabilization by counter flushing. In PODC, pages
244-253, 1994.

30. Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V.

Pemmaraju. Fault-containing self-stabilizing algorithms. In PODC,
pages 45-54, 1996.

31. Alain Cournier, Ajoy Kumar Datta, Franck Petit, and Vincent Villain.
Enabling snap-stabilizatio. In ICDCS, pages 12-19, 2003.

32. Shlomi Dolev and Ted Herman. Superstabilzing protocols for dynamic
distributed systems. Chicago J. Theor. Comput. Sci., 1997.

33. Joffroy Beauquier, Sylvie Delaet, Shlomi Dolev, and Sebastien Tixeuil.
Transient fault detectors. In DISC, pages 62-74, 1998.

34. A. G. Ganek T. A. Corbi. The dawning of the autonomic computing

era. http://www.cs.drexel.edu/~jsalvage/Winter2010/CS576/
autonomic.pdf.

35. G.-C. Roman, Q. Huang, and A. Hazemi, “Consistent Group
Membership in Ad Hoc Networks,” Proc. 23rd Int’l Conf. Software

Eng. (ICSE ’01), pp. 381-388, 2001.

36. S. Han and Y. Xia. Optimal leader election scheme for peer-to-peer

applications. In Proc. 6th Int’l. Conf. on Networking, page 29, 2007.

37. B. Lehane, L. Dolye, and D. O’Mahony, “Ad Hoc Key Management

Infrastructure,” Proc. Int’l Conf. Information Technology:

www.manaraa.com
93

Coding and Computing (ITCC ’05), vol. 2, pp. 540-545, 2005.

38. A.D. Amis, R. Prakash, T.H.P. Vuong, and D.T. Huynh, “Maxmin

D-Cluster Formation in Wireless Ad Hoc Networks,” Proc. IEEE

INFOCOM ’00, pp. 32-41, 2000.

39. D.J. Baker and A. Ephremides, “The Architectural Organization of a

Mobile Radio Network via a Distributed Algorithm,” IEEE

 Trans. Comm., vol. 29, no. 11, pp. 1694-1701, 1981.

40. M. Gerla and J.T.-C. Tsai, “Multicluster, Mobile, Multimedia Radio

Network,” ACM/Baltzer Wireless Networks, vol. 1, no. 3, pp. 255-265,
1995.

41. H. Attiya and J. L. Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. London, UK: McGraw-Hill, 1998.

42. V.D. Park and M.S. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networks,” Proc. IEEE

INFOCOM ’97, pp. 1405-1413, Apr. 1997.

43. S. Vasudevan, J. Kurose, and D. Towsley, “Design and Analysis
of a Leader Election Algorithm for Mobile Ad Hoc Networks,”

Proc. 12th IEEE Int’l Conf. Network Protocols (ICNP ’04), pp. 350-360,

Oct. 2004.

44. E. Gafni and D. Bertsekas. Distributed Algorithms for Generating

Loop-free Routes in Networks with Frequently Changing Topology.
IEEE Transactions on Communications 29(1):11-15, January 1981.

45. M.S. Corson and A.Ephremides. A Distributed Routing Algorithm for
Mobile Wireless Networks. ACM Wireless Networks Journal 1(1):61-82,

Febraury 1995.

46. Yehuda Afek and Anat Bremler. Self-stabilizing unidirectional network
algorithms by power-supply (extended abstract). In SODA, pages 111–

120, 1997.

47. A Arora and MG Gouda. Distributed reset. IEEE Transactions on

Computers, 43:1026–1038, 1994.

48. B Awerbuch, S Kutten, Y Mansour, B Patt-Shamir, and G Varghese.

Time optimal self-stabilizing synchronization. In Proceedings of the

25th Annual ACM Symposium on Theory of Computing (STOC’ 93),
pages 652–661, 1993.

www.manaraa.com
94

49. Abdelouahid Derhab and Nadjib Badache. A self-stabilizing leader

election algorithm in highly dynamic ad hoc mobile networks. IEEE
Transactions on Parallel and Distributed Systems, 19(7):926–939,

2008.

www.manaraa.com
95

VITA

Graduate College

University of Nevada, Las Vegas

Hema Piniganti

Degrees:

Bachelor of Engineering in Computer Science, 2008
Osmania University, India

Master of Science in computer science, 2010
University of Nevada Las Vegas

Thesis Title: Self-Stabilizing Leader Election in Dynamic Networks

Examination Committee:
Chair Person, Dr. Ajoy K Datta, Ph.D.

Committee Member, Dr. Lawrence L. Larmore, Ph.D.

Committee Member, Dr. Yoohwan Kim, Ph.D.

Graduate Faculty Representative, Dr. Emma E. Regentova, Ph.D.

	Self-stabilizing leader election in dynamic networks
	Repository Citation

	TABLE OF CONTENTS

